Add like
Add dislike
Add to saved papers

Dynamic Expression Profile of Follicles at Different Stages in High- and Low-Production Laying Hens.

Genes 2023 December 27
Improving the efficiency of hens and extending the egg-laying cycle require maintaining high egg production in the later stages. The ovarian follicles, as the primary functional units for ovarian development and oocyte maturation, play a crucial role in regulating the continuous ovulation of hens. The egg production rate of laying hens is mostly affected by proper follicle growth and ovulation in the ovaries. The objective of this study was to identify the key genes and signaling pathways involved in the development of ovarian follicles in Taihang hens through transcriptome screening. In this study, RNA sequencing was used to compare and analyze the transcriptomes of ovarian follicles at four developmental stages: small white follicles (SWF), small yellow follicles (SYF), F5 follicles, and F2 follicles, from two groups: the high continual production group (H-Group) and the low continual production group (L-Group). A total of 24 cDNA libraries were constructed, and significant differential expression of 96, 199, 591, and 314 mRNAs was detected in the SWF, SYF, F5, and F2 follicles of the H and L groups, respectively. Based on the results of GO and KEGG enrichment analyses, each stage of follicle growth possesses distinct molecular genetic features, which have important effects on follicle development and significantly promote the formation of continuous production traits through the biosynthesis of steroid hormones, cytokine-cytokine receptor interaction, and neuroactive ligand-receptor interaction. Additionally, through STEM analysis, we identified 59 DEGs, including ZP4 , KCNH1 , IGFs , HMGA2 , and CDH1 , potentially associated with follicular development within four significant modules. This study represents the first transcriptome investigation of follicles in hens with high and low egg-producing characteristics at four crucial developmental stages. These findings provide important molecular evidence for understanding the regulation of follicular development and its variations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app