Add like
Add dislike
Add to saved papers

Higher-Order Topological Peierls Insulator in a Two-Dimensional Atom-Cavity System.

Physical Review Letters 2023 December 30
In this work, we investigate a two-dimensional system of ultracold bosonic atoms inside an optical cavity, and show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state. The latter corresponds to a 2D Peierls transition, generalizing the spontaneous bond dimerization driven by phonon-electron interactions in the 1D Su-Schrieffer-Heeger (SSH) model. Here the bosonic nature of the atoms plays a crucial role to generate the phase, as similar generalizations with fermionic matter do not lead to a plaquette structure. Similar to the SSH model, we show how this pattern opens a nontrivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states, that we characterize by means of a many-body topological invariant and through its entanglement structure. Finally, we demonstrate how this higher-order topological Peierls insulator can be readily prepared in atomic experiments through adiabatic protocols. Our work thus shows how atomic quantum simulators can be harnessed to investigate novel strongly correlated topological phenomena beyond those observed in natural materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app