Add like
Add dislike
Add to saved papers

Cocoa flavanols, Nrf2 activation, and oxidative stress in peripheral artery disease: Mechanistic findings in muscle based on outcomes from a randomized trial.

The pathophysiology of muscle damage in peripheral artery disease (PAD) includes increased oxidant production and impaired antioxidant defenses. Epicatechin (EPI), a naturally occurring flavanol, has antioxidant properties which may mediate the beneficial effects of natural products such as cocoa. In a Phase II randomized trial, a cocoa-flavanol rich beverage significantly improved walking performance compared to placebo in people with PAD. In the present work, the molecular mechanisms underlying the therapeutic effect of cocoa flavanols were investigated by analyzing baseline and follow-up muscle biopsies from participants. Increases in nuclear factor erythroid 2-related factor 2 (Nrf2) target antioxidants heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) in the cocoa group were significantly associated with reduced accumulation of central nuclei, a myopathy indicator, in Type II muscle fibers (p=0.017 and p=0.023, respectively). Protein levels of the mitochondrial respiratory complex III subunit, cytochrome b-c1 complex subunit 2 (UQCRC2), were significantly higher in the cocoa group compared to placebo (p=0.032) and increases in UQCRC2 were significantly associated with increased levels of Nrf2 target antioxidants HO-1 and NQO1 (p=0.001 and p=0.035, respectively). Exposure of non-PAD human myotubes to ex vivo serum from patients with PAD reduced Nrf2 phosphorylation, an indicator of activation, increased hydrogen peroxide production and oxidative stress, and reduced mitochondrial respiration. Treatment of myotubes with EPI in the presence of serum from PAD patients increased Nrf2 phosphorylation and protected against PAD serum-induced oxidative stress and mitochondrial dysfunction. Overall, these findings suggest that cocoa flavanols may enhance antioxidant capacity in PAD via Nrf2 activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app