Add like
Add dislike
Add to saved papers

Flexible and ultrasensitive piezoresistive electronic skin based on chitin/sulfonated carbon nanotube films.

Wearable electronic skin has gained increasing popularity due to its remarkable properties of high flexibility, sensitivity, and lightweight, making it an ideal choice for detecting human physiological activity. In this study, we successfully prepared e-skin using regenerated chitin (RCH) and sulfonated carbon nanotubes (SCNTs). The e-skin demonstrated brilliant mechanical and sensing properties, exhibiting a sensitivity of 1.75 kPa-1 within the 0-5 kPa range and a fast response-recovery time of <10 ms. Furthermore, it displayed an ultra-low detection limit of 1.39 Pa (5 mg), exceptional stability (up to 11,000 cycles), and a remarkable mechanical strength, reaching up to 50 MPa. Moreover, the e-skin was fabricated through a simple and economical approach. With the popularity of micro sensing devices, the e-skin holds tremendous potential for various applications, including wearable electronic devices, health and sports monitoring, artificial intelligence and other fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app