Add like
Add dislike
Add to saved papers

Tangeretin enhances pancreatic beta-TC-6 function by ameliorating tunicamycin-induced cellular perturbations.

Molecular Biology Reports 2023 December 30
BACKGROUND: Pancreatic beta cell health and its insulin-secreting potential are severely compromised under the diabetic condition. One of the key mediators of beta cell dysfunction is endoplasmic reticulum (ER) stress. Pharmacological intervention of ER stress and associated complications in pancreatic beta cells may be an effective strategy for the management of diabetes. In the present study, we evaluated the efficacy of tangeretin, a citrus pentamethoxyflavone, in the alleviation of ER stress and associated perturbations in pancreatic Beta-TC-6 cell lines.

METHODS AND RESULTS: Tunicamycin (pharmacological ER stress inducer) at subtoxic levels was observed to induce beta cell dysfunction by upregulation of intracellular ROS levels, lowering mitochondrial number/biogenesis and membrane potential, elevation of UPR markers, XBP-1, GADD153, and ER resident chaperones. Treatment with tangeretin was successful in improving the beta cell function by lowering the ROS levels and improving the mitochondrial biogenesis and mitochondrial membrane potential. Tangeretin also downregulated the expression levels of XBP-1, GADD153, and ER resident chaperones. GLUT2 expression, however, did not undergo any significant change under ER stress. We also observed altered expression of Pdx-1, TRB3, and p-Akt under the ER stress condition. Tangeretin augmented the expression levels of Pdx-1, and p-Akt while curtailing the expression of TRB3 in beta cells. Tunicamycin treatment suppressed the insulin levels, however, co-treatment with tangeretin could only marginally improve the levels.

CONCLUSION: Targeting ER stress and associated pathways in pancreatic Beta-TC-6 cell lines by tangeretin can be an effective strategy for improving beta cell function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app