Add like
Add dislike
Add to saved papers

The mechanism of Chebulae Fructus Immaturus promote diabetic wound healing based on network pharmacology and experimental verification.

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic ulcers (DUs) are commonly seen in the lower limbs, especially the feet. Long-term hyperglycaemia in diabetic patients may cause peripheral microvascular damage, which affects local blood flow reconstruction when the skin is ruptured. This results in delayed or even non-healing of skin wounds. Chebulae Fructus Immaturus (CFI) is a traditional Chinese medicine. According to traditional Chinese medicine theory, CFI belongs to the lung channel and large intestine channel. Clinical data confirm a significant clinical effect of CFI in the treatment of skin diseases. CFI can be safely used to treat wounds due to its natural active ingredients.

AIM OF THE STUDY: This study utilised HPLC-ESI-QTOF-MS/MS combined with network pharmacology to investigate the mechanism of Chebulae Fructus Immaturus extract (CFIE) in the treatment of DU. Moreover, the efficacy of CFIE on DU was verified in vitro and in vivo by constructing cell models and mouse models.

MATERIALS AND METHODS: The main ingredients of CFIE were identified by HPLC-ESI-QTOF-MS/MS. The targets of these ingredients were predicted by database analysis and intersected with the DU targets. Gene ontology (GO) was used for functional enrichment of differential genes, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for enrichment of signalling pathways related to the differential genes. The network pharmacology findings were validated in vivo and in vitro, and the affinity of key targets and active components was assessed using molecular docking.

RESULTS: Twenty-nine compounds of CFIE were identified by HPLC-ESI-QTOF-MS/MS, and their potential targets were predicted. Among these, 41 targets were associated with DU. KEGG enrichment analysis showed that the PI3K/AKT and HIF-1α signalling pathways were significantly enriched, which may be related to the promotion of wound angiogenesis. In vitro cell experiments showed that CFIE promoted the proliferation, migration and angiogenesis of HUVECs, and also affected the expression of pathway-related proteins. In vivo experiments showed that CFIE increased the expression of pathway-related proteins in wound tissue and promoted the formation of blood vessels.

CONCLUSIONS: In summary, this study systematically demonstrated the possible therapeutic effects and mechanisms of CFIE on DU through network pharmacology analysis and experimental verification. The results revealed that CFIE can accelerate the angiogenesis of diabetic wounds through the PI3K/AKT and HIF-1α signalling pathways, ultimately promoting the healing of diabetic wounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app