Add like
Add dislike
Add to saved papers

Developing a Multichannel Bioreactor with a Collagen Scaffold, ECM, and Cryoprecipitate to Significantly Produce Platelets from Umbilical Cord Blood Stem Cells.

Background: Platelets play a key role in the treatment of thrombocytopenia. Nowadays, platelets (PLTs) are only obtained through blood donation. However, due to the limitations in their preparation and storage, they are produced in laboratories, especially through bioreactors that convert megakaryocytes from stem cells into large-scale injectable PLTs. Materials and Methods: In this study, the CD34 cells isolated from cord blood were differentiated into megakaryocytes. A 6-chamber bioreactor with a two-layer collagen scaffold, several ECM factors, and human cryoprecipitate were used to simulate the structure of the bone marrow. After the addition of megakaryocytes to the scaffold, PLTs were produced due to the flow pressure and the interaction between the scaffold structure and the ECM factors. Results: CD41 + cells were expanded 100 times as much as CD34 + cord blood stem cells. The mean PLT release from one megakaryocyte in the pure collagen scaffold was 17.42 PLTs. Once fibrin, fibronectin, hyaluronic acid, and cryoprecipitates were added to collagen, the mean PLT release was 21.4, 22.4, 23.9, and 27.37, respectively. With the simultaneous addition of three factors to collagen (CFFH) and then four factors (CFFHC), the number of PLTs reached 30.52 and then 34. Conclusion: Functional PLTs can be produced on a large scale with a multi-chamber bioreactor using a combination of ECM and cryoprecipitate with collagen scaffolding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app