Add like
Add dislike
Add to saved papers

Urinary biomarkers of drinking-water disinfection byproducts in relation to diminished ovarian reserve risk: A case-control study from the TREE cohort.

BACKGROUND: Disinfection byproducts (DBPs) as ovarian toxicants have been documented in toxicological studies. However, no human studies have explored the effects of exposure to DBPs on diminished ovarian reserve (DOR).

OBJECTIVE: To assess whether urinary biomarkers of exposure to drinking-water DBPs were associated with DOR risk.

METHODS: A total of 311 women undergoing assisted reproductive technology were diagnosed with DOR in the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. The cases were matched to the controls with normal ovarian reserve function by age in a ratio of 1:1. Urinary trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were quantified as biomarkers of drinking-water DBP exposures. The conditional logistic regression and restricted cubic spline (RCS) were used to explore urinary biomarkers of drinking-water DBP exposures in associations with the risk of DOR.

RESULTS: Elevated urinary DCAA levels were associated with higher DOR risk [adjusted odds ratio (OR) = 1.87; 95 % confidence interval (CI): 1.16, 3.03 for the highest vs. lowest quartiles; P for trend = 0.016]. The association was confirmed in the RCS model, with a linear dose-response curve (P for overall association = 0.029 and P for non-linear association = 0.708). The subgroup analysis by age and body mass index (BMI) showed that urinary DCAA in association with DOR risk was observed among women ≥35 years old and leaner women (BMI < 24 kg/m2 ), but the group differences were not statistically significant. Moreover, a U-shaped dose-response curve between urinary TCAA and DOR risk was estimated in the RCS model (P for overall association = 0.011 and P for non-linear association = 0.004).

CONCLUSIONS: Exposure to drinking-water DBPs may contribute to the risk of DOR among women undergoing assisted reproductive technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app