Add like
Add dislike
Add to saved papers

A sensitive ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of assay and trace-level genotoxic tosylate analogs (methyl and ethyl) in empagliflozin and its tablet dosage forms.

This study performed the simultaneous quantification of assay and two alkyl sulfonate (tosylate) analogs of empagliflozin (EGZ), specifically methyl 4-methyl benzene sulfonate (MMBS) and ethyl 4-methyl benzene sulfonate (EMBS) in EGZ, and its finished dosage form using an accurate and sensitive ultra-performance liquid chromatography-mass spectrometry method. The separation was achieved on a Waters Acquity BEH Shield RP18 (100 × 2.1 mm, 1.7 μm) column in gradient elution mode with 0.1% formic acid and acetonitrile as the mobile phases and a flow rate of 0.5 mL/min. For simultaneous quantification, the multiple reaction monitoring technique was utilized. The procedure was successfully validated in accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The peak areas of both impurities, along with their concentrations, exhibited a good relationship with Pearson's correlation coefficient (R), which was >0.999 in the range of 0.3-6 ppm with an EGZ concentration of 2 mg/mL. The percentage recoveries from the limit of quantitation (LOQ) to 200% to the specification level were in the range of 94.82%-102.92%, whereas the percentage relative standard deviation (%RSD) was <2. Therefore, this method is rapid and accurate to quantify MMBS, EMBS, and EGZ assay simultaneously from the marketed tablet dosage forms of EGZ for commercial release and stability sample testing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app