Add like
Add dislike
Add to saved papers

Differential impact of a ghrelin receptor antagonist or inverse agonist in the electrical kindling model of epilepsy.

Epilepsy Research 2023 September 31
Ghrelin is a peptide, which has been shown to affect seizures. However, there is not a consensus about its real impact on the control of seizure severity. We assessed the influence of intra-amygdala injections of a ghrelin receptor (GHSR) antagonist, as well as a GHSR inverse agonist on the electrical kindling-induced seizures. Two unipolar electrodes and a tripolar electrode twisted with a guide cannula were implanted in the skull surface or the basolateral amygdala of adult male rats, respectively. A rapid electrical kindling protocol was applied for kindling epileptogenesis. The stimulations were applied until rats showed three consecutive stage five seizures. Each rat was considered as its control. D-Lys-3-GHRP-6 (1, 12.5, and 25 μg/rat) or [D-Arg, D-phe, D-Trp, heu] substance P (D-SP) (50, 500 and 5000 ng/rat) as the GHSR antagonist or inverse agonist were injected into the basolateral amygdala. Seizure parameters including after-discharge duration (ADD), stage five duration (S5D), and seizure stage (SS) were documented thirty minutes following administration of the drugs or saline. Antagonism of the GHSR in the amygdala, significantly increased seizure induction in the kindled rats, in a dose-dependent manner, and induced spontaneous seizures leading to status epilepticus. Conversely, D-SP had a dose-dependent anticonvulsant activity, indicated by decreased ADD and S5D. The results show that GHSR inverse agonism suppressed seizure severity in the rat amygdala kindling model, whereas GHSR antagonism made seizures more severe. Therefore, when considering the ghrelin system to modulate seizures, it is crucial to note the differential impact of various GHSR ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app