Add like
Add dislike
Add to saved papers

Spinal navigation for small thoracic intradural tumors: The challenge between minimally invasive and exoscopic magnification.

BACKGROUND: Spinal navigation offers significant benefits in the surgical treatment of small thoracic intradural tumors. It enables precise tumor localization without subjecting the patient to high radiation doses. In addition, it allows for a smaller skin incision, reduced muscle stripping, and limited bone removal, thereby minimizing the risk of iatrogenic instability, blood loss, postoperative pain, and enabling shorter hospital stays.

CASE DESCRIPTION: This video presents two cases demonstrating the application of spinal navigation technique for thoracic intradural tumors measuring <20 mm. In the first case, which involves a small calcified tumor, navigation can be performed using 3D fluoroscopy or computed tomography images obtained intraoperatively. Notably, as illustrated in the second case, the merging of preoperative magnetic resonance imaging images with intraoperative 3D fluoroscopy enables navigation in the context of soft intradural lesions as well. The setup of the operating room for these procedures is also depicted.

CONCLUSION: In these procedures, the use of an exoscope, in addition to the well-known advantages in terms of magnification and ergonomics, provides a large space of movement around the surgical field, with greater ease in the use of navigation devices and ultrasound. The minimal invasiveness of the surgical approach is in no way a hindrance to exoscopic visualization and surgical dissection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app