Add like
Add dislike
Add to saved papers

Estrogen-related receptor functions via the 20-hydroxyecdysone and IIS/TOR signaling pathways to regulate the development and morphology changes of ant Polyrhachis vicina Roger (Hymenoptera, Formicidae).

Estrogen-related receptor (ERR) is a key regulator of insect growth, development, and metabolic processes in insects; however, the molecular mechanisms underlying its effects are not fully understood. We investigated roles of 20-hydroxyecdysone (20E) and insulin/insulin-like signaling/target of rapamycin (IIS/TOR) signaling pathways in the effects of PvERR on larval development, metamorphosis, and adult growth in ant Polyrhachis vicina Roger. PvFOXO expression levels depended on caste and developmental stage. PvERR RNAi significantly reduced the expression levels of IIS/TOR signaling pathway genes and 20E signaling pathway genes in fourth-instar larvae, pupae, females, and workers and significantly increased the expression levels of IIS/TOR signaling pathway genes PvFOXO and PvAkt in males. PvFOXO RNAi resulted in developmental defects and increased mortality. After PvFOXO RNAi, the expression of PvERR, 20E signaling pathway genes, and IIS/TOR signaling pathway genes decreased significantly in pupae, females, and workers and increased significantly in fourth-instar larvae. Exogenous 20E attenuated expression changes induced by PvFOXO RNAi in a sex- and stage-specific manner. These results indicate that ERR interacts with 20E and IIS/TOR signaling pathways to regulate caste determination, metamorphosis, and male fertility in P. vicina and that correlations between PvERR and PvFOXO are caste- and stage-specific.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app