Add like
Add dislike
Add to saved papers

Self-Healing of Trotter Error in Digital Adiabatic State Preparation.

Adiabatic time evolution can be used to prepare a complicated quantum many-body state from one that is easier to synthesize and Trotterization can be used to implement such an evolution digitally. The complex interplay between nonadiabaticity and digitization influences the infidelity of this process. We prove that the first-order Trotterization of a complete adiabatic evolution has a cumulative infidelity that scales as O(T^{-2}δt^{2}) instead of O(T^{2}δt^{2}) expected from general Trotter error bounds, where δt is the time step and T is the total time. This result suggests a self-healing mechanism and explains why, despite increasing T, infidelities for fixed-δt digitized evolutions still decrease for a wide variety of Hamiltonians. It also establishes a correspondence between the quantum approximate optimization algorithm and digitized quantum annealing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app