Add like
Add dislike
Add to saved papers

Estimation of lower limb joint moments based on the inverse dynamics approach: a comparison of machine learning algorithms for rapid estimation.

The aim of this study is to estimate the joint moments of the ankle, knee, and hip joints during walking. A sit-to-stand (STS) movement analysis was first performed on 20 participants with different anthropometric characteristics. Then, analysis of the dynamics of the STS motion was used to develop a biomechanical model. Decision tree (DT), linear regression (LR), support vector machine (SVM), random forest (RF), and three deep learning (DL) algorithms and deep neural network (DNN), long-short-term memory (LSTM), and convolutional neural network (CNN) are examined in this work to estimate three joint moments: ankle, knee, and hip. The results of the seven algorithms were evaluated using four statistical benchmarks: MSR, RMSE, correlation coefficient (R), and MAE to find the most accurate one. The results show that the most successful algorithms were LSTM in estimating knee, hip, and ankle joint moments using 19 and 7 inputs. The R value was 0.9990 using 19 inputs and 0.9972 using 7 inputs. The other algorithms have a correlation coefficient (R) success of 0.9902, 0.9770, 0.9884, 0.9577, 0.9786, and 0.9022 for RF, CNN, DT, DNN, SVM, and LR, respectively. The prediction of joint moments plays a crucial role in the design of the biomechanical system with the desired mechanical properties. Especially, the need has arisen to predict joint moments in a shorter time to utilize in real-time active prosthesis/orthosis controllers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app