Add like
Add dislike
Add to saved papers

In vivo synaptic potency, short-term and long-term plasticity at the hippocampal Schaffer collateral-CA1 synapses: Role of different light-dark cycles in male rats.

Brain Research 2023 July 26
The changes in the light-dark(L/D) cycle could modify cellular mechanisms in some brain regions. The present study compared the effects of various L/D cycles on invivo synaptic potency, short-term and long-term plasticity in the hippocampal CA1 area, adrenal glands weight(AGWs), corticosterone (CORT) levels, and body weight differences(BWD) in male rats. Male rats were assigned into different L/D cycle groups: L4/D20, L8/D16, L12/D12(control), L16/D8, and L20/D4. The slope, amplitude, and the area under curve(AUC) related to the field excitatory postsynaptic potentials(fEPSPs) were assessed, using the input-output(I/O) functions, paired-pulse(PP) responses at different interpulse intervals, and after the induction of long-term potentiation(LTP) in the hippocampal CA1 area. Also, the CORT levels, AGWs, and BWDs were measured in all groups. The slope, amplitude, and AUC of fEPSP in the I/O functions, all three phases of PP, before and after the LTP induction, were significantly decreased in all experimental groups, especially in the L20/D4 and L4/D20 groups. As such, the CORT levels and AGWs were significantly increased in all experimental groups, especially in the L20/D4 group. Overall, the uncommon L/D cycles (minimum and particularly maximum durations of light) significantly reduced the cellular mechanism of learning and memory. Also, downtrends were observed in synaptic potency, as well as short-term and long-term plasticity. The changes in PP with high interpulse intervals, or activity of GABAB receptors, were more significant than the changes in other PP phases with different L/D durations. Additionally, the CORT levels, adrenal glands, and body weight gain occurred time-independently concerning different L/D lengths.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app