Add like
Add dislike
Add to saved papers

Functional Analysis and Clinical Importance of ATP1A1 in Colon Cancer.

BACKGROUND: Na+ /K+ -ATPase α1 subunit (ATP1A1) exhibits aberrant expression in various types of cancer. Moreover, its levels in specific tissues are associated with the development of cancer. Nevertheless, the mechanism and signaling pathways underlying the effects of ATP1A1 in colon cancer (CC) have not been elucidated, and its prognostic impact remains unknown.

METHODS: Knockdown of ATP1A1 expression was performed in human CC cell lines HT29 and Caco2 using small interfering RNA. The roles of ATP1A1 in various biological processes of cells (i.e., proliferation, cell cycle, apoptosis, migration, and invasion) were assessed. Microarray analysis was utilized for gene expression profiling. Samples obtained from 200 patients with CC who underwent curative colectomy were analyzed through immunohistochemistry.

RESULTS: ATP1A1 knockdown suppressed cell proliferation, migration, and invasion and induced apoptosis. The results of the microarray analysis revealed that the upregulated or downregulated gene expression in ATP1A1-depleted cells was related to the extracellular signal-regulated kinase 5 (ERK5) signaling pathway [epidermal growth factor receptor (EGFR), mitogen-activated protein kinase kinase 5 (MAP2K5), mitogen-activated protein kinase 7 (MAPK7), FOS, MYC, and BCL2 associated agonist of cell death (BAD)]. Immunohistochemical analysis demonstrated a correlation between ATP1A1 expression and pathological T stage (p = 0.0054), and multivariate analysis identified high ATP1A1 expression as an independent predictor of poor recurrence-free survival in patients with CC (p = 0.0040, hazard ratio: 2.807, 95% confidence interval 1.376-6.196).

CONCLUSIONS: ATP1A1 regulates tumor progression through the ERK5 signaling pathway. High ATP1A1 expression is associated with poor long-term outcomes in patients with CC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app