Add like
Add dislike
Add to saved papers

Principal neurons in the olfactory cortex mediate bidirectional modulation of seizures.

Although the piriform cortex (PC) has been previously implicated as a critical node for seizure generation and propagation, the underlying neural mechanism has remained unclear. Here, we found increased excitability in PC neurons during amygdala kindling acquisition. Optogenetic or chemogenetic activation of PC pyramidal neurons promoted kindling progression, whereas inhibition of these neurons retarded seizure activities induced by electrical kindling in the amygdala. Furthermore, chemogenetic inhibition of PC pyramidal neurons alleviated the severity of kainic acid-induced acute seizures. These results demonstrate that PC pyramidal neurons bidirectionally modulate seizures in temporal lobe epilepsy, providing evidence for the efficacy of PC pyramidal neurons as a potential therapeutic target for epileptogenesis. KEY POINTS: While the piriform cortex (PC) is an important olfactory centre critically involved in olfactory processing and plays a crucial role in epilepsy due to its close connection with the limbic system, how the PC regulates epileptogenesis is largely unknown. In this study, we evaluated the neuronal activity and the role of pyramidal neurons in the PC in the mouse amygdala kindling model of epilepsy. PC pyramidal neurons are hyperexcited during epileptogenesis. Optogenetic and chemogenetic activation of PC pyramidal neurons significantly promoted seizures in the amygdala kindling model, whereas selective inhibition of these neurons produced an anti-epileptic effect for both electrical kindling and kainic acid-induced acute seizures. The results of the present study indicate that PC pyramidal neurons bidirectionally modulate seizure activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app