Add like
Add dislike
Add to saved papers

Fabrication of a gradient AZ91-bioactive glass composite with good biodegradability.

This study used friction stir-back extrusion to fabricate the AZ91 + 3 wt% bioactive glass gradient composite wire. The microstructure, mechanical properties, and corrosion resistance of a material in a simulated body fluid were investigated. Three 2-mm diameter holes with varying hole patterns were drilled in the cross-section of the AZ91 rod to apply 3 wt % bioactive glass to the AZ91 matrix. The results demonstrated that the hole pattern strongly influenced the material's flow in the extruded wire's cross-section. By increasing the distance between the center of the initial rod and the center of the holes, a higher temperature and more uniform distribution of plastic strain are formed during friction stir back extrusion, resulting in uniform distribution of bioactive glass particles and α + β eutectic structure near the surface of composite wires. Introducing bioactive glass particles into the zone near the surface of the AZ91 rod results in the formation of a uniform distribution of bioactive glass particles near the surface and their absence in the central zone of the composite wire. A higher amount of discontinuous β-Mg17 Al12 phase and α + β eutectic formed at the grain boundaries by increasing the temperature and plastic strain during friction stir-back extrusion. The crystallographic texture of the AZ91 rod changed from prismatic to basal and pyramidal due to the friction stir-back extrusion method. A gradient AZ91-bioactive glass composite wire with ultimate tensile strength, yield strength, elongation, and corrosion resistance 58, 64, 62, and 34%, respectively, greater than AZ91 as-cat rod can be produced by inserting bioactive glass powder using a hole drilling method and applying a friction stir back extrusion process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app