Add like
Add dislike
Add to saved papers

Differences in kick-leg kinematics in various side-kick heights.

This study aims to explore the variation of lower extremity kinematic characteristics when elite taekwondo athletes perform the side-kick on protective gear placed at various heights. Twenty distinguished male national athletes were recruited and were asked to kick targets at three different heights adjusted according to their body height. A three-dimensional (3D) motion capture system was used to collect kinematic data. Kinematic parameters differences in the side-kick at three different heights were analyzed by using a one-way ANOVA ( p  < .05). The results revealed significant differences in the peak linear velocities of the pelvis, hip, knee, ankle, and centre of gravity of the foot during the leg-lifting phase ( p  < .05). Significant differences between heights were noted in the maximum angle of pelvis left tilting and hip abduction in both phases. In addition, the maximum angular velocities of pelvis left tilting and hip internal rotation were only different in the leg-lifting phase. This study found that, to kick at a higher target, athletes increase the linear velocities of their pelvis and all lower extremity joints of attacking leg in the leg-lifting phase; however, they only increase rotational variables on the proximal segment at the peak angle of the pelvis (left tilting) and hip (abduction and internal rotation) in the same phase. As an application in actual competitions, according to the opponent's body height, athletes can adjust both linear and rotational velocities of their proximal segements (pelvis and hip) and deliver into distal segements (knee, ankle, foot) linear velocity to perform accurate and rapid kicks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app