Add like
Add dislike
Add to saved papers

Remodeling of the neuromuscular junction in myasthenia gravis increases serum neurofilament heavy chain levels.

Muscle & Nerve 2023 July
INTRODUCTION/AIMS: In myasthenia gravis, prolonged muscle denervation causes muscle atrophy. We re-visited this observation using a biomarker hypothesis. We tested if serum neurofilament heavy chain levels, a biomarker for axonal degeneration, were elevated in myasthenia gravis.

METHODS: We enrolled 70 patients with isolated ocular myasthenia gravis and 74 controls recruited from patients in the emergency department. Demographic data were collected alongside serum samples. Serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for the neurofilament heavy chain (NfH-SMI35). The statistical analyses included group comparisons, receiver operator characteristic (ROC) curves, area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values.

RESULTS: Serum neurofilament heavy chain levels were significantly (p < 0.0001) higher in individuals with myasthenia gravis (0.19 ng/mL) than in healthy control subjects (0.07 ng/mL). A ROC AUC optimized cutoff level of 0.06 ng/mL gave a diagnostic sensitivity of 82%, specificity of 76%, positive predictive value of 0.77 and a negative predictive value of 0.81.

DISCUSSION: The increase of serum neurofilament heavy chain levels in myasthenia gravis is consistent with observations of muscle denervation. We suggest that there is ongoing remodeling of the neuromuscular junction in myasthenia gravis. Longitudinal quantification of neurofilament isoform levels will be needed to investigate the prognostic value and potentially guide treatment decisions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app