Add like
Add dislike
Add to saved papers

HAI-1 is required for the novel role of FGFBP1 in maintenance of cell morphology and F-actin rearrangement in human keratinocytes.

Human Cell 2023 April 20
Formation and maintenance of skin barrier function require tightly controlled membrane-associated proteolysis, in which the integral membrane Kunitz-type serine protease inhibitor, HAI-1, functions as the primary inhibitor of the membrane-associated serine proteases, matriptase and prostasin. Previously, HAI-1 loss in HaCaT human keratinocytes resulted in an expected increase in prostasin proteolysis but a paradoxical decrease in matriptase proteolysis. The paradoxical decrease in shed active matriptase is further investigated in this study with an unexpected discovery of novel functions of fibroblast growth factor-binding protein 1 (FGFBP1), which acts as an extracellular ligand that can rapidly elicit F-actin rearrangement and subsequently affect the morphology of human keratinocytes. This novel growth factor-like function is in stark contrast to the canonical activity of this protein through interactions with FGFs for its pathophysiological functions. This discovery began with the observation that HAI-1 KO HaCaT cells lose the characteristic cobblestone morphology of the parental cells and exhibit aberrant F-actin formation along with altered subcellular targeting of matriptase and HAI-2. The alterations in cell morphology and F-actin status caused by targeted HAI-1 deletion can be restored by treatment with conditioned medium from parental HaCaT cells, in which FGFBP1 was identified by tandem mass spectrometry. Recombinant FGFBP1 down to 1 ng/ml was able to revert the changes caused by HAI-1 loss. Our study reveals a novel function of FGFBP1 in the maintenance of keratinocyte morphology, which depends on HAI-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app