Add like
Add dislike
Add to saved papers

Predicting anterior cruciate ligament failure load with T 2 * relaxometry and machine learning as a prospective imaging biomarker for revision surgery.

Scientific Reports 2023 March 3
Non-invasive methods to document healing anterior cruciate ligament (ACL) structural properties could potentially identify patients at risk for revision surgery. The objective was to evaluate machine learning models to predict ACL failure load from magnetic resonance images (MRI) and to determine if those predictions were related to revision surgery incidence. It was hypothesized that the optimal model would demonstrate a lower mean absolute error (MAE) than the benchmark linear regression model, and that patients with a lower estimated failure load would have higher revision incidence 2 years post-surgery. Support vector machine, random forest, AdaBoost, XGBoost, and linear regression models were trained using MRI T2 * relaxometry and ACL tensile testing data from minipigs (n = 65). The lowest MAE model was used to estimate ACL failure load for surgical patients at 9 months post-surgery (n = 46) and dichotomized into low and high score groups via Youden's J statistic to compare revision incidence. Significance was set at alpha = 0.05. The random forest model decreased the failure load MAE by 55% (Wilcoxon signed-rank test: p = 0.01) versus the benchmark. The low score group had a higher revision incidence (21% vs. 5%; Chi-square test: p = 0.09). ACL structural property estimates via MRI may provide a biomarker for clinical decision making.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app