Add like
Add dislike
Add to saved papers

Tether-free optogenetic control of insulin secretion using an upconversion nanoparticle-doped hydrogel platform.

Biomaterials Science 2023 January 31
Glucagon-like peptide-1 (GLP-1), as a molecular therapeutic, induces glucose-dependent stimulation of insulin secretion, which has drawn significant attention in treating type II diabetes. However, it always suffers from hurdles such as short half-lives or instability. Thus, producing such therapeutics endogenously, as and when needed, is beneficial. Optogenetics-based production of GLP-1 offers an attractive alternative, wherein, the cell lines such as HEK293T can be genetically modified to bring the expression of the gene of interest under visible light control. However, the need for blue light for activation necessitates the implantation of invasive optical fibers owing to high tissue scattering and low depth of penetration through biological tissue at this wavelength. Here, we overcome this problem by proposing an upconversion nanoparticle (UCNP)-based system. HEK293T cells, rewired to produce GLP-1 under blue light illumination, were co-encapsulated with UCNPs in a hydrogel. The UCNPs act as near-infrared (NIR) to blue light nano-transducers, allowing deep penetration toward implementing a tether-free optogenetic gene expression platform. This platform is particularly powerful for thick gel implants (>3 mm) that cannot be illuminated throughout using a blue light source. Moreover, the GLP-1 produced in this platform was sufficient to increase insulin secretion in rat insulinoma cells, providing a powerful and controllable therapeutic tool for diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app