Read by QxMD icon Read

Biomaterials Science

Miaoyi Wang, Aleksandr Kakinen, Emily H Pilkington, Thomas P Davis, Pu Chun Ke
Recent studies have shown promise on the use of small molecules and nanoparticles (NPs) for the inhibition of protein aggregation, a hallmark of neurodegenerative diseases and type 2 diabetes (T2D). Towards this end here we show the differential effects of silver and iron oxide nanoparticles (AgNPs and IONPs) on the mesoscopic properties of human islet amyloid polypeptide (IAPP) aggregation associated with T2D. Both citrate- and branched polyethyleneimine-coated AgNPs (c-AgNPs, bPEI-AgNPs) inhibited IAPP aggregation at 500 μg mL(-1), likely through electrostatic attraction and sequestering of IAPP monomers from fibrillation...
January 12, 2017: Biomaterials Science
Shuwen Peng, Yuanyuan He, Murat Er, Yuanzhi Sheng, Yueqing Gu, Haiyan Chen
Near-infrared (NIR) photothermal therapy (PTT) is a new approach to ablate cancer without affecting normal tissues. A pivotal concern of PPT is to develop photo-responsive agents with high biocompatibility as well as effective photothermal conversion efficiency. Copper sulfide (CuS) nanoparticles prepared are characterized by their low synthesis cost, wide NIR absorption range, good biocompatibility and favorable NIR photothermal conversion efficiency. CuS nanoparticles were then coated with mesoporous silicon dioxide (SiO2) by the Stober method, and further loaded with anticancer drug doxorubicin (DOX)...
January 12, 2017: Biomaterials Science
Chuan Ma, Leilei Shi, Yu Huang, Lingyue Shen, Hao Peng, Xinyuan Zhu, Guoyu Zhou
Activation of the epithelial to mesenchymal transition (EMT) in photodynamic therapy (PDT) can lead to the recurrence and progression of tumors. To enhance the effects of PDT, it is essential to inhibit the Wnt/β-catenin signaling pathway involved in EMT progression. Herein, we used polyethylene glycol-polyethyleneimine-chlorin e6 (PEG-PEI-Ce6) nanoparticles to efficiently deliver Wnt-1 small interfering RNA (siRNA) to the cytoplasm of KB cells (oral squamous cell carcinoma) that were subjected to PDT. Wnt-1 siRNA effectively inhibited the Wnt/β-catenin signaling pathway, reducing the expression of Wnt-1, β-catenin and vimentin that are crucial to the EMT...
January 10, 2017: Biomaterials Science
Jin Suzuki, Nobuhiro Nagai, Matsuhiko Nishizawa, Toshiaki Abe, Hirokazu Kaji
We describe an electrochemical method of harvesting cells cultured on a biodegradable polymeric nanosheet (cell/nanosheet construct), which is stabilized on a self-assembled monolayer (SAM) of thiol molecules. A poly(lactic-co-glycolic acid) (PLGA) nanosheet was attached by hydrophobic interactions onto the surface of a SAM of l-cysteine coated onto a gold electrode. Retinal pigment epithelial cell lines (RPE-J cells) were cultured on the nanosheet to form a monolayer. An AA-size dry battery was used to apply a negative electrical potential, causing reductive desorption of the SAM from the gold surface...
January 9, 2017: Biomaterials Science
Jonathan Rosenbaum, Davy Louis Versace, Samir Abbad-Andallousi, Remi Pires, Christophe Azevedo, Pierre Cénédese, Pierre Dubot
The influence of copper derived TiO2 surfaces (nCu-nT-TiO2) on the death of nosocomial Staphylococcus aureus (Sa) and Escherichia coli (Ec), was investigated. TiO2 nanotube (nT-TiO2) arrays were fabricated by anodic oxidation of pure titanium sheets in fluorhydric solutions, leading to surface nanostructuration and creation of specific reactive sites. Copper nanocubes with a mean size of 20 nm have been synthesized and deposited on the nT-TiO2 surface by pulsed electrodeposition from a copper sulphate solution...
January 9, 2017: Biomaterials Science
Brandon Alexander Holt, Michael C Bellavia, Daniel Potter, David White, Sean R Stowell, Todd Sulchek
The complement system is an integral component of the humoral immune system, and describes a cascade of interacting proteins responsible for the opsonization and lysis of foreign pathogens, in addition to the recruitment of immune cells. However, complement activation is also implicated in the progression and complication of immune dysfunctions such as sepsis. Microparticle (MP) biomaterials capable of tuning the local magnitude of serum complement activation could improve complement-mediated cytotoxicity to serum-resistant bacteria or calm an overactive immune response during sepsis...
January 9, 2017: Biomaterials Science
Balasubramanian Sivakumar, Ravindran Girija Aswathy, Rebeca Romero-Aburto, Trevor Mitcham, Keith A Mitchel, Yutaka Nagaoka, Richard R Bouchard, Pulickel M Ajayan, Toru Maekawa, Dasappan Nair Sakthikumar
We have designed versatile polymeric nanoparticles with cancer cell specific targeting capabilities via aptamer conjugation after the successful encapsulation of curcumin and superparamagnetic iron oxide nanoparticles (SPIONs) inside a PLGA nanocapsule. These targeted nanocomposites were selectively taken up by tumor cells, under in vitro conditions, demonstrating the effectiveness of the aptamer targeting mechanism. Moreover, the nanocomposite potentially functioned as efficient multiprobes for optical, magnetic resonance imaging (MRI) and photoacoustic imaging contrast agents in the field of cancer diagnostics...
January 6, 2017: Biomaterials Science
Zhigang Xu, Meili Hou, Xiaoxiao Shi, Yong-E Gao, Peng Xue, Shiying Liu, Yuejun Kang
Accurate diagnosis and treatment based on small molecular prodrugs can enhance drug efficiency and reduce side-effects during cancer therapy. Herein, we report the preparation of a type of glutathione (GSH)-responsive small prodrug delivery system based on targeting folic acid (FA) and conjugating with the hydrophobic antitumor drug camptothecin (CPT) via disulfide bonds. The obtained prodrug is capable of high and precise drug loading (36.8 wt%) and can self-assemble into nanoaggregates with an average size of 46...
January 6, 2017: Biomaterials Science
Hsiu-Wen Chien, Jiashing Yu, Shing Tak Li, Hsin-Yu Chen, Wei-Bor Tsai
Hydrogels provide three-dimensional (3D) frames with tissue-like elasticity and high water content for tissue scaffolds. Previously, we reported the design and synthesis protocol of a biodegradable poly(carboxybetaine) poly(CB) hydrogel with a zwitterionic carboxybetaine methacrylate (CBMA) monomer and a disulfide-containing crosslinker via free radical polymerization. We also demonstrated that cells could be successfully encapsulated in the hydrogels without compromising cytoviability. In this study, we evaluated the cytoviability of three commonly used zwitterionic monomers (CBMA, 2-methacryloyloxyethyl phosphorylcholine (MPC) and sulfobetaine methacrylate (SBMA)) and the suitability of being utilized as precursor materials for in situ gel forming implants...
January 4, 2017: Biomaterials Science
Zheng Ruan, Le Liu, Wei Jiang, Shuya Li, Yucai Wang, Lifeng Yan
pH-Sensitive doxorubicin conjugated polymeric micelles entrapped with near infrared (NIR) photosensitizer BODIPY (which works as an imaging agent at the same time) were designed and synthesized by ring opening polymerization of N-carboxyanhydride with mPEG-NH2 as the initiator, following reaction with doxorubicin to form the hydrazone-bond linker for pH responsiveness. Then the NIR dye (BODIPY) was loaded in the micelles for both bioimaging and photodynamic therapy (PDT). A significant cytotoxicity of NIR imaging-guided combined PDT and chemotherapy could be found by MTT assays, which was also confirmed with a fluorescence microscope, indicating a new kind of polymeric nanoparticle for potential theranostic treatment of cancers...
December 21, 2016: Biomaterials Science
Minsun Kim, Seung Won Shin, Cheol Won Lim, Jaeyun Kim, Soong Ho Um, Dukjoon Kim
Iron oxide nanoparticles (NPs) were encapsulated with polyaspartamide-based graft copolymers to bind and track the immune cells as imaging probes. Mono-disperse iron oxide NPs with a mean diameter of 10.7 nm were synthesized by the thermal decomposition method, and their shape and distribution were measured by electrophoretic light scattering and transmission electron microscopy. To enhance their biocompatibility, interfacial and hydrodynamic stability, and fluorescence detection, biodegradable polysuccinimide (PSI) grafted with several functional groups of octadecylamine (C18), ethanolamine (EA), ethylenediamine (EDA), 4-(N-maleimidomethyl) cyclohexane carboxylic acid N-hydroxysuccinimide ester (SMCC), and fluorescein isothiocyanate (FITC) was coated on the iron oxide NPs...
December 21, 2016: Biomaterials Science
Qiuhua Luo, Bin Yang, Wenhui Tao, Jia Li, Longfa Kou, He Lian, Xin Che, Zhonggui He, Jin Sun
Tumor cells have an increased demand for amino acids to support their rapid growth and malignant metastasis. Transfer of amino acids across plasma membranes depends on several amino acid transporters that are highly upregulated in tumor cells and are promising targets for tumor cell-selective therapy. In this study, stealth liposomal systems functionalized with aspartate-polyoxyethylene stearate conjugate (APS) were developed for transporter-mediated targeted delivery to ATB(0,+), which is overexpressed human lung cells...
December 19, 2016: Biomaterials Science
Qingfu Ban, Ting Bai, Xiao Duan, Jie Kong
In the cutting-edge field of cancer therapy, noninvasive photothermal therapy (PTT) has received great attention because it is considered to overcome the drawbacks of conventional surgery, radiotherapy and chemotherapy of severe body injuries and side effects on the immune system. The construction of PTT therapeutic and theranostic nanoplatforms is the key issue in achieving tumor targeting, imaging and therapy in a synergetic manner. In this review, we focus on the recent advances in constructing PTT therapeutic and theranostic nanoplatforms by integrating nanomaterials and functional polymers...
December 19, 2016: Biomaterials Science
Jason Olejniczak, Guillaume Collet, Viet Anh Nguyen Huu, Minnie Chan, Sangeun Lee, Adah Almutairi
Biodegradable polymeric materials are a key area of investigation in drug delivery and disease treatment. This is due to their proven clinical potential for payload protection, responsivity, and surface modification imparted by the versatile array of polymers available for their formulation. Here, we employ a novel biodegradable azide containing polymer in the formulation of polymeric nanoparticles and show that these particles can then be functionalized, with biorthogonal click reactions, to alter their surface appearance and their ability to interact with biological systems...
December 16, 2016: Biomaterials Science
Sun-Hee Cho, Jung-Ran Noh, Mi Young Cho, Min-Jeong Go, Yong-Hoon Kim, Eun Sung Kang, Yong Ho Kim, Chul-Ho Lee, Yong Taik Lim
Mesenchymal stem cells (MSCs) can ameliorate renal injury and accelerate repair of acute kidney injury. Herein, we developed a collagen/poly(γ-glutamic acid) (γ-PGA) hydrogel as an injectable scaffold for the delivery of mouse MSCs (mMSCs) and anti-oxidant drugs into injured sites. By the introduction of γ-PGA into conventional collagen, the viscosity of collagen was reduced at ambient temperature for easy handling, while the elastic and viscous moduli of collagen were increased and a new porous structure was generated near body temperature...
December 15, 2016: Biomaterials Science
Chaochao Wang, Lichao Liu, Hongliang Cao, Weian Zhang
Ligand-targeted cancer therapeutics has been developed to minimize non-specific cytotoxicity via ligand-drug conjugates during the past few decades. We present here the design and synthesis of a GSH-activated amphiphilic photosensitizer conjugated with galactose (TPP-S-S-Gal) for targeted photodynamic therapy. Furthermore, the galactoside photosensitizer as supramolecular amphiphiles can self-assemble into micelles, which can be applied in integrative cancer treatment with chemotherapy drugs such as camptothecin (CPT) encapsulated in the hydrophobic core of micelles...
December 12, 2016: Biomaterials Science
Jingchao Li, Hongli Mao, Naoki Kawazoe, Guoping Chen
Multifunctional nanoparticles (NPs) have been widely used in biomedical applications because of their versatile properties. The properties of NPs should be well designed and controlled according to various applications because they may directly affect the functions and performances of NPs in biological systems. Cellular uptake is a prerequisite for the success of NP-based biomedical applications. However, the internalized NPs inside cells may have some adverse effects. Therefore, the interactions between NPs and cells should be thoroughly investigated and elucidated...
December 9, 2016: Biomaterials Science
Jingjing Liu, Kai Liu, Liangzhu Feng, Zhuang Liu, Ligeng Xu
Given the complexity of tumors, several nanomaterial-based treatment modalities like chemotherapy (CT), photodynamic therapy (PDT) and photothermal therapy (PTT) have been developed for combating cancers. However, it is still unclear which strategy is better or how to select optimal approaches for combination treatment since each strategy has been investigated under different conditions. Inspired by its good payload capacity and unique near-infrared absorption, reduced graphene oxide (rGO) was selected in this study as the carrier for loading of doxorubicin (DOX), a chemotherapy drug, and chlorin e6 (Ce6), a photosensitizer...
December 9, 2016: Biomaterials Science
Julia A Braunger, Mattias Björnmalm, Nathan A Isles, Jiwei Cui, Timothy M A Henderson, Andrea J O'Connor, Frank Caruso
The extracellular matrix (ECM) that surrounds cells in vivo represents a biological barrier for nanomaterials in biomedicine. Herein, we present a system for investigating the interactions between circulating polymer particles and ECM components in vitro using a commercially available flow-based device. We use this system to show how material-dependent interactions of two different particle types-one assembled using poly(ethylene glycol) (PEG) and one prepared using poly(methacrylic acid) (PMA)-affect their interactions with basement membrane extracts during in vitro circulation, with PEG particles remaining in circulation longer than PMA particles...
December 9, 2016: Biomaterials Science
Lingdan Kong, Jieru Qiu, Wenjie Sun, Jia Yang, Mingwu Shen, Lu Wang, Xiangyang Shi
RNA interference (RNAi) has been considered as a promising strategy for effective treatment of cancer. However, the easy degradation of small interfering RNA (siRNA) limits its extensive applications in gene therapy. For safe and effective delivery of siRNA, a novel vector system possessing excellent biocompatibility, highly efficient transfection efficiency and specific targeting properties has to be considered. In this study, we report the use of polyethyleneimine (PEI)-entrapped gold nanoparticles (Au PENPs) modified with an arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide via a poly(ethylene glycol) (PEG) spacer as a vector for Bcl-2 (B-cell lymphoma-2) siRNA delivery to glioblastoma cells...
December 6, 2016: Biomaterials Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"