Add like
Add dislike
Add to saved papers

WWOX activates autophagy to alleviate lipopolysaccharide-induced acute lung injury by regulating mTOR.

Acute lung injury (ALI) is characterized by acute systemic inflammatory responses that may lead to severe acute respiratory distress syndrome (ARDS). The clinical course of ALI/ARDS is variable; however, it has been reported that lipopolysaccharides (LPS) play a role in its development. The fragile chromosomal site gene WWOX is highly sensitive to genotoxic stress induced by environmental exposure and is an important candidate gene for exposure-related lung disease research. However, the expression of WWOX and its role in LPS-induced ALI still remain unidentified. This study investigated the expression of WWOX in mouse lung and epithelial cells and explored the role of WWOX in LPS-induced ALI model in vitro and in vivo. In addition, we explored one of the possible mechanisms by which WWOX alleviates ALI from the perspective of autophagy. Here, we observed that LPS stimulation reduced the expression of WWOX and the autophagy marker microtubule-associated protein 1 light chain 3β-II (MAP1LC3B/LC3B) in mouse lung epithelial and human epithelial (H292) cells. Overexpression of WWOX led to the activation of autophagy and inhibited inflammatory responses in LPS-induced ALI cells and mouse model. More importantly, we found that WWOX interacts with mechanistic target of rapamycin [serine/threonine kinase] (mTOR) and regulates mTOR and ULK-1 signaling-mediated autophagy. Thus, reduced WWOX levels were associated with LPS-induced ALI. WWOX can activate autophagy in lung epithelial cells and protect against LPS-induced ALI, which is partly related to the mTOR-ULK1 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app