Add like
Add dislike
Add to saved papers

Cropland intensification mediates the radiative balance of greenhouse gas emissions and soil carbon sequestration in maize systems of sub-Saharan Africa.

Global Change Biology 2022 December 4
Sub-Saharan Africa (SSA) must undertake proper cropland intensification for higher crop yields while minimizing climate impacts. Unfortunately, no studies have simultaneously quantified greenhouse gas (GHG; CO2 , CH4 , and N2 O) emissions and soil organic carbon (SOC) change in SSA croplands, leaving it a blind spot in the accounting of global warming potential (GWP). Here, based on two-year field monitoring of soil emissions of CO2 , CH4 , and N2 O, as well as SOC changes in two contrasting soil types (sandy vs. clayey), we provided the first, full accounting of GWP for maize systems in response to cropland intensifications (increasing nitrogen rates and in combination with crop residue return) in SSA. To corroborate our field observations on SOC change (i.e., 2-y, a short duration), we implemented a process-oriented model parameterized with field data to simulate SOC dynamic over time. We further tested the generality of our findings by including a literature synthesis of SOC change across maize-based systems in SSA. We found that nitrogen application reduced SOC loss, likely through increased biomass yield and consequently belowground carbon allocation. Residue return switched the direction of SOC change from loss to gain; such a benefit (SOC sequestration) was not compromised by CH4 emissions (negligible) nor outweighed by the amplified N2 O emissions, and contributed to negative net GWP. Overall, we show encouraging results that, combining residue and fertilizer-nitrogen input allowed for sequestering 82-284 kg of CO2 -eq per Mg of maize grain produced across two soils. All analyses pointed to an advantage of sandy over clayey soils in achieving higher SOC sequestration targets, and thus call for a re-evaluation on the potential of sandy soils in SOC sequestration across SSA croplands. Our findings carry important implications for developing viable intensification practices for SSA croplands in mitigating climate change while securing food production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app