Add like
Add dislike
Add to saved papers

Locking the Taylor Spatial Frame - The effect of three additional longitudinal rods on osteotomy site movements.

Clinical Biomechanics 2022 December
BACKGROUND: In clinical practice, even when the fixator is locked, a noticeable laxity of the construct can be observed. This study was designed to measure the stiffness of the fixator and to analyze the movements of the osteotomy site. Furthermore, the effect of three additional longitudinal rods on the locking of the construct was analyzed.

METHODS: Five synthetic tibia/fixator models (Model A) were tested under rotational torque (40 Nm) and axial compression (700 N). Three additional rigid rods were subsequently mounted, and the tests were repeated (Model B). The movements of the fixator as well as the osteotomy site were registered by a digital optical measurement system. Load- deformation curves, and so stiffness of the models, were calculated and compared.

FINDINGS: Under rotational and axial loadings, Model A was found to be less rigid than Model B (p = 0.034; p = 0.194). Notably, Model A showed a region of laxity around neutral rotational (ΔF = 5 Nm) and axial (ΔF = 16.64 N) loading before a linear deformation trend was measured. Concomitantly, greater osteotomy site movement was measured for Model A than for Model B under full loading (p = 0.05) and within the region of increased laxity (p = 0.042).

INTERPRETATION: The fixator showed an element of laxity around neutral axial and rotational loading, which transferred to the bone and led to a notable amount of osteotomy gap movement. Mounting three additional rods increased the stiffness of the construct and therefore reduced the movement of the osteotomy site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app