Add like
Add dislike
Add to saved papers

Microfluidic devices employing chemo- and thermotaxis for sperm selection can improve sperm parameters and function in patients with high DNA fragmentation.

Andrologia 2022 December
Conventional sperm processing uses centrifugation has a negative effect on sperm parameters and DNA integrity. We designed and fabricated a novel microfluid device based on chemotaxis and thermotaxis, and compared it with the swim-up method. Twenty normal samples with high DNA fragmentation were included. Each sample was divided into four groups: Group 1, control, Group 2: sperm selection by thermotaxis, Group 3: sperm selection by chemotaxis, and Group 4: sperm selection with thermotaxis and chemotaxis. We used cumulus cells in a microfluid device to create chemotaxis, and, two warm stages to form a temperature gradient for thermotaxis. The spermatozoa were assessed based on the concentration, motility, and fine morphology using Motile Sperm Organelle Morphology Examination, mitochondrial membrane potential (MMP), acrosome reaction (AR), and sperm DNA fragmentation. Concentration (22.40 ± 5.39 vs. 66.50 ± 19.21; p < 0.001) and DNA fragmentation (12.30 ± 3.96% vs. 17.95 ± 2.89%; p < 0.001) after selection in the chemotaxis and thermotaxis microfluid device were significantly lower than control group. The progressive motility (93.75 ± 4.39% vs. 75.55 ± 5.86%, p < 0.001), normal morphology (15.45 ± 2.50% vs. 10.35 ± 3.36, p < 0.001), MMP (97.65 ± 1.81% vs. 94 ± 3.89%, p = 0.02), and AR status (79.20 ± 5.28% vs. 31.20 ± 5.24%, p < 0.001) in the chemotaxis and thermotaxis microfluid device were significantly increased compared to control group. According to these findings, spermatozoa that have penetrated the cumulus oophorus have better morphology and motility, as well as acrosome reactivity and DNA integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app