Add like
Add dislike
Add to saved papers

Applying a deep convolutional neural network to monitor the lateral spread response during microvascular surgery for hemifacial spasm.

BACKGROUND: Intraoperative neurophysiological monitoring is essential in neurosurgical procedures. In this study, we built and evaluated the performance of a deep neural network in differentiating between the presence and absence of a lateral spread response, which provides critical information during microvascular decompression surgery for the treatment of hemifacial spasm using intraoperatively acquired electromyography images.

METHODS AND FINDINGS: A total of 3,674 image screenshots of monitoring devices from 50 patients were prepared, preprocessed, and then adopted into training and validation sets. A deep neural network was constructed using current-standard, off-the-shelf tools. The neural network correctly differentiated 50 test images (accuracy, 100%; area under the curve, 0.96) collected from 25 patients whose data were never exposed to the neural network during training or validation. The accuracy of the network was equivalent to that of the neuromonitoring technologists (p = 0.3013) and higher than that of neurosurgeons experienced in hemifacial spasm (p < 0.0001). Heatmaps obtained to highlight the key region of interest achieved a level similar to that of trained human professionals. Provisional clinical application showed that the neural network was preferable as an auxiliary tool.

CONCLUSIONS: A deep neural network trained on a dataset of intraoperatively collected electromyography data could classify the presence and absence of the lateral spread response with equivalent performance to human professionals. Well-designated applications based upon the neural network may provide useful auxiliary tools for surgical teams during operations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app