Add like
Add dislike
Add to saved papers

Platelet-derived extracellular vesicles encapsulate microRNA-34c-5p to ameliorate inflammatory response of coronary artery endothelial cells via PODXL-mediated P38 MAPK signaling pathway.

BACKGROUND AND AIMS: Low-grade chronic inflammation was reported to serve as a distinctive pathophysiologic feature of coronary artery disease (CAD), the leading cause of death around the world. Herein, the current study aimed to explore whether and how microRNA-34c-5p (miR-34c-5p), a miRNA enriched in extracellular vesicles (EVs) originated from the activated platelet (PLT-EVs), affects the inflammation of human coronary artery endothelial cells (HCAECs).

METHODS AND RESULTS: HCAECs were established as an in vitro cell model using oxidized low-density lipoprotein (ox-LDL). miR-34c-5p, an abundant miRNA in PLT-EVs, can be transferred to HCAECs and target PODXL by binding to its 3'UTR. Gain- and loss-of-function experiments of miR-34c-5p and podocalyxin (PODXL) were performed in ox-LDL-induced HCAECs. Subsequently, HCAECs were subjected to co-culture with PLT-EVs, followed by detection of the expression patterns of key pro-inflammatory factors. Either miR-34c-5p mimic or PLT-EVs harboring miR-34c-5p attenuated the ox-LDL-evoked inflammation in HCAECs by suppressing interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). By blocking the P38 MAPK signaling pathway, miR-34c-5p-mediated depletion of PODXL contributed to protection against ox-LDL-induced inflammation. In vitro findings were further validated by findings observed in ApoE knock-out mice. Additionally, miR-34c-5p in PLT-EVs showed an athero-protective role in the murine model.

CONCLUSION: Altogether, our findings highlighted that miR-34c-5p in PLT-EVs could alleviate inflammation response in HCAECs by targeting PODXL and inactivation of the P38 MAPK signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app