Add like
Add dislike
Add to saved papers

Pathophysiological levels of GDF11 activate Smad2/Smad3 signaling and induce muscle atrophy in human iPSC-derived myocytes.

Skeletal muscle mass is negatively regulated by several TGF-β superfamily members. Myostatin (MSTN) is the most prominent negative regulator of muscle mass. Recent studies show that in addition to MSTN, GDF11, which shares high sequence identity with MSTN, induces muscle atrophy in vitro and in vivo at supraphysiological levels, whereas controversy regarding its roles exists. Furthermore, higher circulating GDF11 levels associate with frailty in humans. On the other hand, little is known about the effect of pathophysiological levels of GDF11 on muscle atrophy. Here we seek to determine whether pathophysiological levels of GDF11 are sufficient to activate Smad2/Smad3 signaling and induce muscle atrophy using human iPSC-derived myocytes (hiPSC-myocytes). We first show that incubating hiPSC-myocytes with pathophysiologic concentrations of GDF11 significantly reduces myocyte diameters. We next demonstrate that pathophysiological levels of GDF11 are sufficient to activate Smad2/3 signaling. Finally, we show that pathophysiological levels of GDF11 are capable of inducing the expression of Atrogin-1, an atrophy-promoting E3 ubiquitin ligase and that FOXO1 blockage reverses the GDF11-induced Atrogin-1 expression and atrophic phenotype. Collectively, our results suggest that GDF11 induces skeletal muscle atrophy at the pathophysiological level through the GDF11-FOXO1 axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app