Journal Article
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Wavelet analysis reveals differential lower limb muscle activity patterns long after anterior cruciate ligament reconstruction.

The purpose of this study was to test whether differences in muscle activity patterns between anterior cruciate ligament-reconstructed patients (ACLR) and healthy controls could be detected 10 to 15 years post-surgery using a machine learning classification approach. Eleven ACLR subjects and 12 healthy controls were recruited from an ongoing prospective randomized clinical trial. Surface electromyography (EMG) signals were recorded from gastrocnemius medialis and lateralis, tibialis anterior, vastus medialis, rectus femoris, biceps femoris, and semitendinosus muscles. Muscle activity was analyzed using wavelet analysis and examined within four sub-phases of the hop test, as well as an average of the task as a whole. K-nearest neighbor machine learning combined with a leave-one-out validation was used to classify the muscle activity patterns as either ACLR or Control. When muscle activity was averaged across the whole hop task, activity patterns for all muscles except the tibialis anterior were identified as being different between the study cohorts. ACLR patients demonstrated continuous muscle activities that spanned take-off, airborne, and landing hop phases versus healthy controls who displayed timed and regulated islets of muscle activities specific to each hop phase. The most striking features were 25-50% greater relative quadriceps intensity and approximately 66% diminished biceps femoris intensity in ACLR patients. The current findings are in contrast to previous work using conventional co-contraction and muscle activation onset EMG measures of the same dataset, underscoring the sensitivity and potential of the wavelet approach coupled with machine learning to reveal meaningful adaptation strategies in this at-risk population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app