Read by QxMD icon Read

Journal of Biomechanics

Vikesh V Chandaria, James McGinty, Niamh C Nowlan
Mechanical forces due to fetal movements play an important role in joint shape morphogenesis, and abnormalities of the joints relating to abnormal fetal movements can have long-term health implications. While mechanical stimulation during development has been shown to be important for joint shape, the relationship between the quantity of mechanical stimulation and the growth and shape change of developing cartilage has not been quantified. In this study, we culture embryonic chick limb explants in vitro in order to reveal how the magnitude of applied movement affects key aspects of the developing joint shape...
October 12, 2016: Journal of Biomechanics
Arin M Ellingson, Joseph D Mozingo, Dixon J Magnuson, Mark W Pagnano, Kristin D Zhao
Fluoroscopic imaging has become increasingly popular to investigate total knee arthroplasty kinematics non-invasively - 3D implant models are aligned with 2D image projections, and optimized via an edge-contour alignment technique. Previous studies have quantified the accuracy of this approach, however they do not always adequately address the impact of image collection parameters. A particularly sensitive parameter is the pulse width, or exposure time per frame. At longer pulse widths, more motion is captured in a single frame; this can lead to image blur and subsequent degradation to image edge quality...
October 11, 2016: Journal of Biomechanics
HaoYuan Hsiao, Thomas M Zabielski, Jacqueline A Palmer, Jill S Higginson, Stuart A Binder-Macleod
Recent rehabilitation approaches for individuals poststroke have focused on improving walking speed because it is a reliable measurement that is associated with quality of life. Previous studies have demonstrated that propulsion, the force used to propel the body forward, determines walking speed. However, there are several different ways of measuring propulsion and no studies have identified which measurement best reflects differences in walking speed. The primary purposes of this study were to determine for individuals poststroke, which measurement of propulsion (1) is most closely related to their self-selected walking speeds and (2) best reflects changes in walking speed within a session...
October 8, 2016: Journal of Biomechanics
Jorge Aramburu, Raúl Antón, Alejandro Rivas, Juan Carlos Ramos, Bruno Sangro, José Ignacio Bilbao
Radioembolization, which consist of the implantation of radioactive microspheres via intra-arterially placed microcatheter, is a safe and effective treatment for liver cancer. Nevertheless, radioembolization-related complications and side effects may arise, which are an active area of ongoing research. The catheter design has been claimed as an option in reducing these complications. In this paper, the influence of catheter type and location are investigated. The study was undertaken by numerically simulating the particle-hemodynamics in a patient-specific hepatic artery during liver radioembolization...
October 7, 2016: Journal of Biomechanics
Christopher Noble, Nicole Smulders, Roger Lewis, Matt J Carré, Steve E Franklin, Sheila MacNeil, Zeike A Taylor
In this study, we examine the effect of collagenase, elastase and glutaraldehyde treatments on the response of porcine aorta to controlled peel testing. Specifically, the effects on the tissue׳s resistance to dissection, as quantified by critical energy release rate, are investigated. We further explore the utility of these treatments in creating model tissues whose properties emulate those of certain diseased tissues. Such model tissues would find application in, for example, development and physical testing of new endovascular devices...
October 7, 2016: Journal of Biomechanics
Digendranath Swain, Anurag Gupta
A cutaneous wound may rupture during healing as a result of stretching in the skin and incompatibility at the wound-skin interface, among other factors. By treating both wound and skin as hyperelastic membranes, and using a biomechanical framework of interfacial growth, we study rupturing as a problem of cavitation in nonlinear elastic materials. We obtain analytical solutions for deformation and residual stress field in the skin-wound configuration while emphasizing the coupling between wound rupture and wrinkling in the skin...
October 6, 2016: Journal of Biomechanics
A D Wibawa, N Verdonschot, J P K Halbertsma, J G M Burgerhof, R L Diercks, G J Verkerke
This study focused on comparing muscle activities predicted by the Musculoskeletal Modeling System with EMG from ten healthy subjects who performed normal walking, one-legged forward hopping and side jumping. Eight EMG electrodes measured the activity of eight right leg muscles. Specific thresholds per muscle were applied on the EMG prior comparison. These thresholds were determined by equalizing the duration of EMG to AMS muscle activity. Three graph variables, number of onsets, offsets and hills were used to quantify the level of agreement by using Cohen׳s kappa analysis...
October 6, 2016: Journal of Biomechanics
L Westover, G Faulkner, W Hodgetts, D Raboud
This study presents the Advanced System for Implant Stability Testing (ASIST) which provides a non-invasive, quantitative measure of the stability of percutaneous implants used for craniofacial rehabilitation such as bone anchored hearing aids or dental implants. The ASIST uses an impact technique coupled with an analytical model which allows the measure to be independent of the system components. This paper presents a laboratory evaluation of the ASIST for the Oticon Medical Ponto and the Cochlear Baha Connect bone anchored hearing aid (BAHA) systems...
October 6, 2016: Journal of Biomechanics
Jimmy Tat, Aaron M Kociolek, Peter J Keir
The most common finding in carpal tunnel syndrome is fibrosis and thickening of the subsynovial connective tissue (SSCT). While the SSCT mediates tendon gliding in the carpal tunnel, this histopathology suggests excessive shear forces are involved in injury development. Ultrasound is often used to quantify relative motion between the finger flexor tendons and SSCT as an indirect measure of "shear-strain"; however, the underlying mechanical implications of using ultrasound are not well understood. The middle flexor digitorum superficialis (FDS) tendon of 8 cadavers was moved in a combination of 2 wrist postures (neutral, flexed), 3 velocities (5, 10, 15cm/s), and 3 forces (10, 20, 30N) to assess ultrasound-based FDS-SSCT relative displacement while simultaneously quantifying tendon frictional work in the carpal tunnel...
October 6, 2016: Journal of Biomechanics
Fuyou Liang, Xiaosheng Liu, Ryuhei Yamaguchi, Hao Liu
Recent studies raised increasing concern about the reliability of computer models in reproducing in vivo hemodynamics in cerebral aneurysms. Boundary condition problem is among the most frequently addressed issues since three-dimensional (3-D) modeling is usually restricted to local arterial segments. The present study focused on aneurysms on the anterior communicating artery (ACoA) which represent a large subgroup of detected cerebral aneurysms and, in particular, have a relatively high risk of rupture compared to aneurysms located in other regions...
October 6, 2016: Journal of Biomechanics
Keizo Yamamoto, Makoto Tsubokura, Jun Ikeda, Keiji Onishi, Sophie Baleriola
The purpose of this study was to investigate the effects of posture of a ski jumper on aerodynamic characteristics during the take-off using computational fluid dynamics (CFD). The CFD method adopted for this study was based on Large-Eddy Simulation. Body surface data were obtained by 3-D laser scanning of an active ski jumper. Based on video analysis of the actual take-off movement, two sets of motion data were generated (world-class jumper A and less-experienced jumper B). The inlet flow velocity that corresponds to the in-run velocity in actual ski jumping was set to 23...
October 6, 2016: Journal of Biomechanics
Gregory J Wright, Matthew C Coombs, R Glenn Hepfer, Brooke J Damon, Thierry H Bacro, Michael K Lecholop, Elizabeth H Slate, Hai Yao
Approximately 30% of temporomandibular joint (TMJ) disorders include degenerative changes to the articular disc, with sex-specific differences in prevalence and severity. Limited tensile biomechanical properties of human TMJ discs have been reported. Stress relaxation tests were conducted on TMJ disc specimens harvested bilaterally from six males and six females (68.9±7.9 years), with step-strain increments of 5%, 10%, 15%, 20% and 30%, at 1% strain-per-second. Stress versus strain plots were constructed, and Young׳s Modulus, Instantaneous Modulus and Relaxed Modulus were determined...
October 6, 2016: Journal of Biomechanics
Jorge Aramburu, Raúl Antón, Alejandro Rivas, Juan Carlos Ramos, Bruno Sangro, José Ignacio Bilbao
Liver radioembolization is a treatment option for patients with primary and secondary liver cancer. The procedure consists of injecting radiation-emitting microspheres via an intra-arterially placed microcatheter, enabling the deposition of the microspheres in the tumoral bed. The microcatheter location and the particle injection rate are determined during a pretreatment work-up. The purpose of this study was to numerically study the effects of the injection characteristics during the first stage of microsphere travel through the bloodstream in a patient-specific hepatic artery (i...
October 5, 2016: Journal of Biomechanics
Xiao Liu, Libing Wang, Zhenze Wang, Zhengxing Li, Hongyan Kang, Yubo Fan, Anqiang Sun, Xiaoyan Deng
Helical flow has been introduced to improve the hemodynamic performance of vascular devices such as arterial grafts, stents and arteriovenous shunts to overcome the flow induced thrombus formation and intimal hyperplasia. However, the quite low intensity of helical flow in the existing devices may limit their function. To obtain desirably high intensity, inspired by the helical flow and tapered configuration of the arterial system, we proposed a new conceptual design of the medical devices, which take the form of a tapered helical shape...
September 23, 2016: Journal of Biomechanics
Naser Nasrollahzadeh, Dominique P Pioletti
Permeability is an overarching mechanical parameter encompassing the effects of porosity, pore size, and interconnectivity of porous structures. This parameter directly influences transport of soluble particles and indirectly regulates fluid pressure and velocity in tissue engineering scaffolds. The permeability also contributes to the viscoelastic behavior of visco-porous material under loading through frictional drag mechanism. We propose a straightforward experimental method for permeability characterization of tissue engineering scaffolds...
September 21, 2016: Journal of Biomechanics
Visar Berki, Brian L Davis
How high does pressure and shear stress sensor resolution need to be in order to reliably measure the plantar pressure and shear profiles (PPSPs) under normal and diabetic feet? In this study, pressure and shear stress data were collected from 26 total diabetic and control subjects using new instrumentation that measures vertical and horizontal force vectors of the plantar contact surface during multiple instances in the gait cycle. The custom built shear-and-pressure-evaluating-camera-system (SPECS) performs simultaneous recordings of pressure and both components of the horizontal force vector (medio-lateral and antero-posterior) at distinctive regions under one׳s foot, at a spatial resolution for each sensor equal to 1...
September 21, 2016: Journal of Biomechanics
Giuliano Lamberto, Saulo Martelli, Aurelio Cappozzo, Claudia Mazzà
Musculoskeletal models are widely used to estimate joint kinematics, intersegmental loads, and muscle and joint contact forces during movement. These estimates can be heavily affected by the soft tissue artefact (STA) when input positional data are obtained using stereophotogrammetry, but this aspect has not yet been fully characterised for muscle and joint forces. This study aims to assess the sensitivity to the STA of three open-source musculoskeletal models, implemented in OpenSim. A baseline dataset of marker trajectories was created for each model from experimental data of one healthy volunteer...
August 24, 2016: Journal of Biomechanics
Lin Lin, Jing-Sheng Li, Willem A Kernkamp, Ali Hosseini, ChangWan Kim, Peng Yin, Lianxin Wang, Tsung-Yuan Tsai, Peter Asnis, Guoan Li
This study was to investigate the in vivo tibiofemoral cartilage contact locations before and after anterior cruciate ligament (ACL) reconstruction at 6 and 36 months. Ten patients with unilateral ACL injury were included. A step-up motion was analyzed using a combined magnetic resonance modeling and dual fluoroscopic imaging techniques. The preoperative (i.e. ACL deficient and healthy contralateral) and postoperative cartilage contact locations at 6 and 36 months were analyzed. Similar patterns of the cartilage contact locations during the step-up motion were found for the preoperative and postoperative knee states as compared to the preoperative healthy contralateral side...
October 3, 2016: Journal of Biomechanics
Chubin Ou, Wei Huang, Matthew Ming-Fai Yuen, Yi Qian
Hemodynamics has been recognized as an important factor in the development, growth, and rupture of cerebral aneurysms, and investigated by computational fluid dynamics techniques using a single phase approach. However, flow-dependent cell transport and interactions are usually ignored in single phase models, in which blood is usually treated as a single phase Newtonian fluid. For getting better insight into the underlying pathology of intracranial aneurysm, cell transport and interactions should be covered in hemodynamic studies...
October 3, 2016: Journal of Biomechanics
Michael E Stender, R Dana Carpenter, Richard A Regueiro, Virginia L Ferguson
With osteoarthritis, a complex set of progressive chemical, biological, and mechanical changes occur in both cartilage and bone. The aim of this study is to develop a high-fidelity computational model of the complete bone-cartilage unit to study the evolution of osterarthritis-induced articular cartilage (AC) damage and remodeling of subchondral cortical bone (SCB) and subchondral trabecular bone (STB). A finite element model of spherical indentation was developed with a depth-dependent anisotropic model of degenerating articular cartilage, a calcified cartilage (CC) zone, and SCB and STB remodeling regions...
October 3, 2016: Journal of Biomechanics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"