Add like
Add dislike
Add to saved papers

A stable and highly luminescent 3D Eu(III)-organic framework for the detection of colchicine in aqueous environment.

Environmental Research 2022 January 7
The metal-organic framework materials have an important application as sensors. In this work, a microporous three-dimensional (3D) Eu(III)-organic framework (Eu-MOF), [Eu2 (3,5-bct) (phen)2 (ox)2 (H2 O)]·H2 O, was constructed from 3,5-bis(3'-carboxyphenyl)-1,2,4-triazole (3,5-H2 bct), oxalate (ox) and 1,10-phenanthroline (phen) as a luminescent sensor. The free volume was found to be 15.7% per unit volume ignoring the free water molecules. The Eu-MOF showed bright red light due to the emission at 622 nm (5 D0 → 7 F2 transition) of the Eu(III) with high quantum yield (QY, 52.51%). The Eu-MOF exerted high luminescence stability in common organic solvents as well as aqueous solutions within a wide pH range from 4 to 11. Based on the luminescent Eu-MOF, the sensing behavior for colchicine in the aqueous environment was studied. Highly selective and sensitive detection (LOD = 2.43 × 10-5  mol∙L-1 ) of colchicine was observed by the Eu-MOF even in the presence of potential interfering components. The sensing mechanism for colchicine was investigated by experimental and theoretical results. It is worth noting that a film (Film@Eu-MOF) prepared by loading Eu-MOF showed intense characteristic red light emission under UV light. The luminescence color changed immediately from red to colorless when the Film@Eu-MOF came in contact with colchicine. Highly sensitive and rapid detection of colchicine in wastewater was achieved using this Film@Eu-MOF, which could be identified by the naked eye. The experimental results suggest that the synthesized Eu-MOF has potential application as a luminescent sensing material for pollutants in the environmental system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app