Journal Article
Review
Add like
Add dislike
Add to saved papers

New Insights into the Biosensing of Parkinson's Disease Biomarkers: A Concise Review.

BACKGROUND: Parkinson's disease (PD) is a long-term, degenerative, and neurological disease in which a person loses control of certain body functions. The formulation of novel effective therapeutics for PD as a neurodegenerative disease requires accurate and efficient diagnosis at the early stages.

OBJECTIVE: Analyzing data gathered by measurable signals converted from biological reactions allows for qualitative and quantitative evaluations. Among various approaches reported so far, biosensors are powerful analytical tools that have been used in detecting the biomarkers of PD.

METHODS: Biosensor's biological recognition components include antibodies, receptors, microorganisms, nucleic acids, enzymes, cells and tissues, and biomimetic structures. This review introduces electrochemical, optical, and optochemical detection of PD biomarkers based on recent advances in nanotechnology and material science, which resulted in the development of high-performance biosensors in this field.

RESULTS: PD biomarkers such as α-synuclein protein, dopamine (DA), urate, ascorbic acid, miRNAs, and their biological roles are summarized. Additionally, the advantages and disadvantages of the usual standard methods are reviewed. We compared electrochemical, optical, and optochemical biosensors' properties and novel strategies for higher sensitivity and selectivity.

CONCLUSION: The development of novel biosensors is required for the early diagnosis of PD as sensitive, rapid, reliable, and cost-effective systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app