Add like
Add dislike
Add to saved papers

Fabrication of pure-drug microneedles for delivery of montelukast sodium.

Dissolving microneedle (MN) patches are usually formulated with a blend of drug and excipients added for mechanical strength and drug stabilization. In this study, we developed MNs made of pure drug to maximize drug loading capacity. MN patches were fabricated for transdermal delivery of montelukast sodium (MS) which is used to treat asthma and allergic rhinitis. We developed three different fabrication methods - solvent casting, melt casting, and solvent washing - and determined that filling molds with MS powder followed by a solvent washing method enabled MS to be loaded selectively to the MNs. Drug localization was confirmed with Raman imaging. MNs were able to penetrate in vitro and ex vivo skin models, and maintained strong mechanical properties during 6 months' storage at 22 °C. MS was also stable and compatible with the formulation used for the patch backing layer after 3 months' storage at 40 °C. MS delivery efficiency into skin was 55%, which enabled delivery of 3.2 mg MS into porcine skin ex vivo, which is in the range of MS doses in human clinical use. We conclude that the solvent washing method can be used to prepare MNs containing pure drug, such as MS at milligram doses in a ~ 1 cm2 MN patch.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app