Add like
Add dislike
Add to saved papers

Deciphering a Cyclodipeptide Synthase Pathway Encoding Prenylated Indole Alkaloids in Streptomyces leeuwenhoekii .

Cyclodipeptide synthases (CDPSs) catalyse the formation of cyclodipeptides using aminoacylated-tRNAs as substrates and have great potentials in the production of diverse 2,5-diketopiperazines (2,5-DKPs). Genome mining of Streptomyces leeuwenhoekii NRRL B-24963 revealed a two-gene locus saz encoding a CDPS SazA and a unique fused enzyme SazB harboring two domains: phytoene-synthase-like prenyltransferase (PT) and methyltransferase (MT). Heterologous expression of the saz gene(s) in Streptomyces albus J1074 led to the production of four prenylated indole alkaloids, among which streptoazines A-C (3-5) are new compounds. Expression of different gene combinations showed that the SazA catalyzes the formation of cyclo (L-Trp-L-Trp) (cWW, 1 ), followed by consecutive prenylation and methylation by SazB. Biochemical assays demonstrated that SazB is a bifunctional enzyme, catalyzing sequential C3 / C3' -prenylation(s) by SazB-PT and N1 / N1' -methylation(s) by SazB-MT. Of note substrate selectivity of SazB-PT and SazB-MT was probed, revealing the stringent specificity of SazB-PT but relative flexibility of SazB-MT. IMPORTANCE Natural products with 2,5-DKP skeleton have long sparked the interest in drug discovery and development. Recent advances in microbial genome sequencing have revealed that the potentials of CDPS-dependent pathways encoding new 2,5-DKPs are underexplored. In this study, we report the genome mining of a new CDPS-containing two-gene operon and activation of this cryptic gene cluster through heterologous expression, leading to the discovery of four indole 2,5-DKP alkaloids. The cWW-synthesizing CDPS SazA and the unusual PT-MT fused enzyme SazB were characterized. Our results expand the repertoire of CDPSs and associated tailoring enzymes, setting the stage for accessing diverse prenylated alkaloids using synthetic biology strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app