Add like
Add dislike
Add to saved papers

Role of ranitidine in N-nitrosodimethylamine formation during chloramination of competing micropollutants.

Ranitidine (RNT) is a widely known precursor of N-nitrosodimethylamine (NDMA) as evinced by the self-catalytic formation of NDMA during chloramination. In the present study, the NDMA formation potentials (NDMA-FP) of 26 micropollutants were assessed, particularly when mixed with RNT. 11 compounds were identified as individual precursors, including trimebutine and cimetidine, which exhibited substantial NDMA-FP, with up to 10% molar yield. In addition, nitrosamines, other than NDMA, namely N-nitrosodiethylamine and N-nitrosomethylamine, were observed from diethylamine-containing precursors, such as metoclopramide. In a 1:1 mixture of RNT and a competitor, the change in NDMA-FP was mostly comparable (within 20% deviation), while antagonistic interactions were observed for competitors, such as diethylhydroxylamine. The scattered overall NDMA-FP should be considered as a product of competition among the precursors for core substrates and intermediates for NDMA formation. The co-existence of either trimebutine or metoclopramide with RNT led to an exceptionally synergetic NDMA generation. Degradation kinetics and chlorination/nitrosation experiments combined with mass spectroscopy analyses indicated that RNT would accelerate both the initial chlorination and nitrosation of trimebutine and metoclopramide, leading to N-nitroso complexes, which have well-understood NDMA formation pathways, i.e., amination with subsequent aminyl radical generation. This work demonstrates a wide array of precursors with NDMA-FP, suggesting that nitrosamine formation is potentially underestimated in field environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app