Add like
Add dislike
Add to saved papers

Mechanical allodynia triggered by cold exposure in mice with the Scn11a p.R222S mutation: a novel model of drug therapy for neuropathic pain related to Na V 1.9.

Mutations within the SCN11A gene which encodes the voltage-gated sodium channel NaV 1.9 mainly expressed in small fiber sensory neurons have been associated with neuropathic disorders; however, suitable medications have not been fully investigated. To develop drug therapies against NaV 1.9-related neuropathic pain, we aimed to establish a novel model using mice carrying the Scn11a p.R222S mutation initially identified in patients with familial episodic limb pain that is characterized by paroxysmal pain induced by fatigue or bad weather conditions. We investigated the influence of cold exposure (4 °C, overnight) on the behavioral and biochemical phenotypes of Scn11a p.R222S mutant (R222S) and wild type C57BL/6N (WT) mice. We also tested the effects of acetaminophen (125, 250 mg/kg, perorally, p.o.) and traditional Japanese medicine, goshajinkigan (0.5 or 1.0 g/kg, p.o.), which are analgesic drugs prescribed to patients with neuropathic pain, in this model of cold-induced mechanical allodynia in R222S mice.Cold-exposed R222S mice exhibited enhanced mechanical allodynia and thermal hypersensitivity compared with WT mice. The decrease of the mechanical withdrawal threshold in R222S mice was reversible 24 h after housing at room temperature. There was no significant change in the levels of interleukin-1β, interleukin-6, tumor necrosis factor-α, or interferon-γ in the plasma or spinal cords of WT and R222S mice after cold exposure. Both acetaminophen (250 mg/kg) and goshajinkigan (1.0 g/kg) significantly attenuated mechanical allodynia in R222S mice. The model of cold-induced mechanical allodynia in mice with the Scn11a p.R222S mutation is novel and useful for evaluating analgesic drugs for intractable neuropathies related to NaV 1.9.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app