Add like
Add dislike
Add to saved papers

Determining surface chemical composition of silver nanoparticles during sulfidation by monitoring the ligand shell.

Evaluating the surface and core compositions of transforming nanoparticles (NP) represents a significant measurement challenge but is necessary for predicting performance in applied systems and their toxicity in natural environments. Here, we use X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to characterize both the surface and core ofpolyvinyl pyrollidone-silver nanoparticles in the presence of two Suwannee River fulvic acid (FA) standards and humic acid (HA) during sulfidation, the predominant transformation pathway in environmental systems. Only by using data from both spectroscopic methods was a clear relationship established between AgNP core composition and FA affinity established, where concomitant loss of FA was observed with Ag2 S formation. Using XPS to measure AgNP surface composition, overlapping trends from XPS on FA I desorption from the AgNP surface as function of surface sulfidation were observed with FA II in the ATR-FTIR measurements. The reproducibility of the changing heterogeneous coating as a function of AgNP sulfidation provided a transferable method to determine the extent of Ag sulfidation without further need for the high resolution, high cost measurement tools that underpinned validation of the method. The relationship was not observed for HA, where a lower affinity to the AgNP surface was observed, suggesting distinct binding to the NP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app