Add like
Add dislike
Add to saved papers

Gene identification and antimicrobial activity analysis of a novel lysozyme from razor clam Sinonovacula constricta.

Lysozymes are important immune effectors present in phylogenetically diverse organisms. They play vital roles in bacterial elimination during early immune responses. In the present study, a second invertebrate-type (i-type) lysozyme gene from razor clam Sinonovacula constricta (denoted as ScLYZ-2) was cloned by RACE and nested PCR methods. The full-length cDNA sequences of ScLYZ-2 were 1558 bp, including a 5' untranslated region (UTR) of 375 bp, an open reading frame of 426 bp, and a 3'-UTR of 757 bp with polyadenylation signal sequence (AATAAA) located upstream of the poly(A) tail. SMART analysis showed that ScLYZ-2 contains a signal peptide in the first 16 amino acid (AA) sequences and a destabilase domain located from 24 to 134 AA sequences. The deduced AA sequences of ScLYZ-2 were highly similar (42%-58%) to other known lysozyme genes of bivalve species. Multiple alignments of AA sequences showed that ScLYZ-2 possesses the classical i-type lysozyme family signature of two motifs ["MDVGSLSCGP(Y/F)QIK" and "CL(E/L/R/H)C(I/M)C"] and two catalytic residues (Glu35 and Asp46 ). Moreover, phylogenetic analysis showed that ScLYZ-2 is a new member of the i-type lysozyme family. In healthy razor clams, ScLYZ-2 was highly expressed in the hepatopancreas, followed by the gills, water pipes, and abdominal foot. Lysozyme activity and ScLYZ-2 expression levels were significantly upregulated in the hepatopancreas and gills after being infected with V. splendidus, V. harveyi, V. parahaemolyticus and S. aureus and M. luteus. Moreover, the recombinant ScLYZ-2 had strong antimicrobial activities against V. splendidus, V. harveyi, and V. parahaemolyticus. Furthermore, the minimal inhibitory concentration of the recombinant ScLYZ-2 against V. parahaemolyticus was 7.2 μmol/mL. Taken together, our results show that ScLYZ-2 plays an important role in the immune defense of razor clam by eliminating pathogenic microorganisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app