Add like
Add dislike
Add to saved papers

A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer.

While 3D cellular models are useful to study biological processes, gel-embedded organoids have large variability. This paper describes high-yield production of large (~1 mm diameter), scaffold-free, highly-spherical organoids in a one drop-one organoid format using MCF10A cells, a non-tumorigenic breast cell line. These organoids display a hollow lumen and secondary acini, and express mammary gland-specific and progenitor markers, resembling normal human breast acini. When subjected to treatment with TGF-β, the hypoxia-mimetic reagent CoCl2 , or co-culture with mesenchymal stem/stromal cells (MSC), the organoids increase collagen I production and undergo large phenotypic and morphological changes of neoplastic progression, which were reproducible and quantifiable. Advantages of this scaffold-free, 3D breast organoid model include high consistency and reproducibility, ability to measure cellular collagen I production without noise from exogenous collagen, and capacity to subject the organoid to various stimuli from the microenvironment and exogenous treatments with precise timing without concern of matrix binding. Using this system, we generated organoids from primary metaplastic mammary carcinomas of MMTV-Cre;Ccn6fl/fl mice, which retained the high grade spindle cell morphology of the primary tumors. The platform is envisioned to be useful as a standardized 3D cellular model to study how microenvironmental factors influence breast tumorigenesis, and to potential therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app