Add like
Add dislike
Add to saved papers

The Drosophila Blood-Brain Barrier Adapts to Cell Growth by Unfolding of Pre-existing Septate Junctions.

Developmental Cell 2018 October 23
The blood-brain barrier is crucial for nervous system function. It is established early during development and stays intact during growth of the brain. In invertebrates, septate junctions are the occluding junctions of this barrier. Here, we used Drosophila to address how septate junctions grow during larval stages when brain size increases dramatically. We show that septate junctions are preassembled as long, highly folded strands during embryonic stages, connecting cell vertices. During subsequent cell growth, these corrugated strands are stretched out and stay intact during larval life with very little protein turnover. The G-protein coupled receptor Moody orchestrates the continuous organization of junctional strands in a process requiring F-actin. Consequently, in moody mutants, septate junction strands cannot properly stretch out during cell growth. To compensate for the loss of blood-brain barrier function, moody mutants form interdigitating cell-cell protrusions, resembling the evolutionary ancient barrier type found in primitive vertebrates or invertebrates such as cuttlefish.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app