Read by QxMD icon Read

Developmental Cell

Daniel J Merk, Jasmin Ohli, Natalie D Merk, Venu Thatikonda, Sorana Morrissy, Melanie Schoof, Susanne N Schmid, Luke Harrison, Severin Filser, Julia Ahlfeld, Serap Erkek, Kaamini Raithatha, Thomas Andreska, Marc Weißhaar, Michael Launspach, Julia E Neumann, Mehdi Shakarami, Dennis Plenker, Marco A Marra, Yisu Li, Andrew J Mungall, Richard A Moore, Yussanne Ma, Steven J M Jones, Beat Lutz, Birgit Ertl-Wagner, Andrea Rossi, Rabea Wagener, Reiner Siebert, Andreas Jung, Charles G Eberhart, Boleslaw Lach, Michael Sendtner, Stefan M Pfister, Michael D Taylor, Lukas Chavez, Marcel Kool, Ulrich Schüller
Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf)...
March 9, 2018: Developmental Cell
Curtis A Thorne, Ina W Chen, Laura E Sanman, Melanie H Cobb, Lani F Wu, Steven J Altschuler
The intestinal epithelium maintains a remarkable balance between proliferation and differentiation despite rapid cellular turnover. A central challenge is to elucidate mechanisms required for robust control of tissue renewal. Opposing WNT and BMP signaling is essential in establishing epithelial homeostasis. However, it has been difficult to disentangle contributions from multiple sources of morphogen signals in the tissue. Here, to dissect epithelial-autonomous morphogenic signaling circuits, we developed an enteroid monolayer culture system that recapitulates four key properties of the intestinal epithelium, namely the ability to maintain proliferative and differentiated zones, self-renew, polarize, and generate major intestinal cell types...
February 26, 2018: Developmental Cell
Anindya Ganguly, Logan DeMott, Chuanmei Zhu, Daniel D McClosky, Charles T Anderson, Ram Dixit
Spatiotemporal regulation of kinesins is essential for microtubule-dependent intracellular transport. In plants, cell wall deposition depends on the FRA1 kinesin, whose abundance and motility are tightly controlled to match cellular growth rate. Here, we show that an importin-β, IMB4, regulates FRA1 activity in a developmental manner. IMB4 physically interacts with a PY motif in the FRA1 motor domain and inhibits its motility by preventing microtubule binding, while also protecting FRA1 against proteasome-mediated degradation, thus providing a mechanism to couple the motility and stability of FRA1...
February 23, 2018: Developmental Cell
Tsukasa Okiyoneda, Guido Veit, Ryohei Sakai, Misaki Aki, Takeshi Fujihara, Momoko Higashi, Seiko Susuki-Miyata, Masanori Miyata, Norihito Fukuda, Akihiko Yoshida, Haijin Xu, Pirjo M Apaja, Gergely L Lukacs
The peripheral protein quality control (QC) system removes non-native membrane proteins, including ΔF508-CFTR, the most common CFTR mutant in cystic fibrosis (CF), from the plasma membrane (PM) for lysosomal degradation by ubiquitination. It remains unclear how unfolded membrane proteins are recognized and targeted for ubiquitination and how they are removed from the apical PM. Using comprehensive siRNA screens, we identified RFFL, an E3 ubiquitin (Ub) ligase that directly and selectively recognizes unfolded ΔF508-CFTR through its disordered regions...
February 22, 2018: Developmental Cell
Maria J Gomez-Lamarca, Julia Falo-Sanjuan, Robert Stojnic, Sohaib Abdul Rehman, Leila Muresan, Matthew L Jones, Zoe Pillidge, Gustavo Cerda-Moya, Zhenyu Yuan, Sarah Baloul, Phillippe Valenti, Kerstin Bystricky, Francois Payre, Kevin O'Holleran, Rhett Kovall, Sarah J Bray
A key feature of Notch signaling is that it directs immediate changes in transcription via the DNA-binding factor CSL, switching it from repression to activation. How Notch generates both a sensitive and accurate response-in the absence of any amplification step-remains to be elucidated. To address this question, we developed real-time analysis of CSL dynamics including single-molecule tracking in vivo. In Notch-OFF nuclei, a small proportion of CSL molecules transiently binds DNA, while in Notch-ON conditions CSL recruitment increases dramatically at target loci, where complexes have longer dwell times conferred by the Notch co-activator Mastermind...
February 20, 2018: Developmental Cell
George E Gentsch, Thomas Spruce, Rita S Monteiro, Nick D L Owens, Stephen R Martin, James C Smith
Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects...
February 17, 2018: Developmental Cell
Wen Tang, Meetu Seth, Shikui Tu, En-Zhi Shen, Qian Li, Masaki Shirayama, Zhiping Weng, Craig C Mello
In metazoans, Piwi-related Argonaute proteins engage piRNAs (Piwi-interacting small RNAs) to defend the genome against invasive nucleic acids, such as transposable elements. Yet many organisms-including worms and humans-express thousands of piRNAs that do not target transposons, suggesting that piRNA function extends beyond genome defense. Here, we show that the X chromosome-derived piRNA 21ux-1 downregulates XOL-1 (XO Lethal), a master regulator of X chromosome dosage compensation and sex determination in Caenorhabditis elegans...
February 13, 2018: Developmental Cell
Sandra Pinho, Tony Marchand, Eva Yang, Qiaozhi Wei, Claus Nerlov, Paul S Frenette
The spatial localization of hematopoietic stem cells (HSCs) in the bone marrow (BM) remains controversial, with some studies suggesting that they are maintained in homogeneously distributed niches while others have suggested the contributions of distinct niche structures. Subsets of quiescent HSCs have been reported to associate with megakaryocytes (MK) or arterioles in the BM. However, these HSC subsets have not been prospectively defined. Here, we show that platelet and myeloid-biased HSCs, marked by von Willebrand factor (vWF) expression, are highly enriched in MK niches...
February 9, 2018: Developmental Cell
Jui M Dave, Teodelinda Mirabella, Scott D Weatherbee, Daniel M Greif
The murine embryonic blood-brain barrier (BBB) consists of endothelial cells (ECs), pericytes (PCs), and basement membrane. Although PCs are critical for inducing vascular stability, signaling pathways in PCs that regulate EC morphogenesis during BBB development remain unexplored. Herein, we find that murine embryos lacking the transforming growth factor β (TGF-β) receptor activin receptor-like kinase 5 (Alk5) in brain PCs (mutants) develop gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH)...
February 8, 2018: Developmental Cell
Shuyuan Zhang, Kejin Zhou, Xin Luo, Lin Li, Ho-Chou Tu, Alfica Sehgal, Liem H Nguyen, Yu Zhang, Purva Gopal, Branden D Tarlow, Daniel J Siegwart, Hao Zhu
Most cells in the liver are polyploid, but the functional role of polyploidy is unknown. Polyploidization occurs through cytokinesis failure and endoreduplication around the time of weaning. To interrogate polyploidy while avoiding irreversible manipulations of essential cell-cycle genes, we developed orthogonal mouse models to transiently and potently alter liver ploidy. Premature weaning, as well as knockdown of E2f8 or Anln, allowed us to toggle between diploid and polyploid states. While there was no detectable impact of ploidy alterations on liver function, metabolism, or regeneration, mice with more polyploid hepatocytes suppressed tumorigenesis and mice with more diploid hepatocytes accelerated tumorigenesis in mutagen- and high-fat-induced models...
February 5, 2018: Developmental Cell
Antonina J Kruppa, Chieko Kishi-Itakura, Thomas A Masters, Joanna E Rorbach, Guinevere L Grice, John Kendrick-Jones, James A Nathan, Michal Minczuk, Folma Buss
Mitochondrial quality control is essential to maintain cellular homeostasis and is achieved by removing damaged, ubiquitinated mitochondria via Parkin-mediated mitophagy. Here, we demonstrate that MYO6 (myosin VI), a unique myosin that moves toward the minus end of actin filaments, forms a complex with Parkin and is selectively recruited to damaged mitochondria via its ubiquitin-binding domain. This myosin motor initiates the assembly of F-actin cages to encapsulate damaged mitochondria by forming a physical barrier that prevents refusion with neighboring populations...
January 31, 2018: Developmental Cell
Tong Liang, Shenglin Mei, Chen Shi, Yu Yang, Yao Peng, Libang Ma, Fei Wang, Xu Li, Xi Huang, Yanhai Yin, Hongtao Liu
UV-B light (UV-B radiation) is known to inhibit plant growth, but the mechanism is not well understood. UVR8 (UV RESISTANCE LOCUS 8) is a UV-B light photoreceptor that mediates UV-B light responses in plants. We report here that UV-B inhibits plant growth by repressing plant steroid hormone brassinosteroid (BR)-promoted plant growth. UVR8 physically interacts with the functional dephosphorylated BES1 (BRI1-EMS-SUPPRESSOR1) and BIM1 (BES1-INTERACTING MYC-LIKE 1) transcription factors that mediate BR-regulated gene expression and plant growth to inhibit their activities...
January 26, 2018: Developmental Cell
Misoon Park, Cornelia Krause, Matthias Karnahl, Ilka Reichardt, Farid El Kasmi, Ulrike Mayer, York-Dieter Stierhof, Ulrike Hiller, Georg Strompen, Martin Bayer, Marika Kientz, Masa H Sato, Marc T Nishimura, Jeffery L Dangl, Anton A Sanderfoot, Gerd Jürgens
Membrane vesicles delivered to the cell-division plane fuse with one another to form the partitioning membrane during plant cytokinesis, starting in the cell center. In Arabidopsis, this requires SNARE complexes involving the cytokinesis-specific Qa-SNARE KNOLLE. However, cytokinesis still occurs in knolle mutant embryos, suggesting contributions from KNOLLE-independent SNARE complexes. Here we show that Qa-SNARE SYP132, having counterparts in lower plants, functionally overlaps with the flowering plant-specific KNOLLE...
January 26, 2018: Developmental Cell
Steven J Del Signore, Rodrigo Cilla, Victor Hatini
Contractile forces eliminate cell contacts in many morphogenetic processes. However, mechanisms that balance contractile forces to promote subtler remodeling remain unknown. To address this gap, we investigated remodeling of Drosophila eye lattice cells (LCs), which preserve cell contacts as they narrow to form the edges of a multicellular hexagonal lattice. We found that during narrowing, LC-LC contacts dynamically constrict and expand. Similar to other systems, actomyosin-based contractile forces promote pulses of constriction...
January 26, 2018: Developmental Cell
Jin Huang, Carl J Mousley, Louis Dacquay, Nairita Maitra, Guillaume Drin, Chong He, Neale D Ridgway, Ashutosh Tripathi, Michael Kennedy, Brian K Kennedy, Wenshe Liu, Kristin Baetz, Michael Polymenis, Vytas A Bankaitis
Kes1/Osh4 is a member of the conserved, but functionally enigmatic, oxysterol binding protein-related protein (ORP) superfamily that inhibits phosphatidylinositol transfer protein (Sec14)-dependent membrane trafficking through the trans-Golgi (TGN)/endosomal network. We now report that Kes1, and select other ORPs, execute cell-cycle control activities as functionally non-redundant inhibitors of the G1/S transition when cells confront nutrient-poor environments and promote replicative aging. Kes1-dependent cell-cycle regulation requires the Greatwall/MASTL kinase ortholog Rim15, and is opposed by Sec14 activity in a mechanism independent of Kes1/Sec14 bulk membrane-trafficking functions...
January 26, 2018: Developmental Cell
Lindsey Barske, Pauline Rataud, Kasra Behizad, Lisa Del Rio, Samuel G Cox, J Gage Crump
The jaw is central to the extensive variety of feeding and predatory behaviors across vertebrates. The bones of the lower but not upper jaw form around an early-developing cartilage template. Whereas Endothelin1 patterns the lower jaw, the factors that specify upper-jaw morphology remain elusive. Here, we identify Nuclear Receptor 2f genes (Nr2fs) as enriched in and required for upper-jaw formation in zebrafish. Combinatorial loss of Nr2fs transforms maxillary components of the upper jaw into lower-jaw-like structures...
January 17, 2018: Developmental Cell
Zan Tang, Yucheng Hu, Zheng Wang, Kewu Jiang, Cheng Zhan, Wallace F Marshall, Nan Tang
Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase...
January 9, 2018: Developmental Cell
Matthew D Smith, Margaret E Harley, Alain J Kemp, Jimi Wills, Martin Lee, Mark Arends, Alex von Kriegsheim, Christian Behrends, Simon Wilkinson
Mechanisms of selective autophagy of the ER, known as ER-phagy, require molecular delineation, particularly in vivo. It is unclear how these events control ER proteostasis and cellular health. Here, we identify cell-cycle progression gene 1 (CCPG1), an ER-resident protein with no known physiological role, as a non-canonical cargo receptor that directly binds to core autophagy proteins via an LIR motif to mammalian ATG8 proteins and, independently and via a discrete motif, to FIP200. These interactions facilitate ER-phagy...
December 27, 2017: Developmental Cell
Chang Liu, Ying Xin, Le Xu, Zhaokui Cai, Yuanchao Xue, Yong Liu, Daoxin Xie, Yule Liu, Yijun Qi
Conventional RNA interference (RNAi) pathways suppress eukaryotic gene expression at the transcriptional or post-transcriptional level. At the core of RNAi are small RNAs (sRNAs) and effector Argonaute (AGO) proteins. Arabidopsis AGO1 is known to bind microRNAs (miRNAs) and post-transcriptionally repress target genes in the cytoplasm. Here, we report that AGO1 also binds to the chromatin of active genes and promotes their transcription. We show that sRNAs and SWI/SNF complexes associate with nuclear AGO1 and are required for AGO1 binding to chromatin...
December 27, 2017: Developmental Cell
John N Griffin, Florencia Del Viso, Anna R Duncan, Andrew Robson, Woong Hwang, Saurabh Kulkarni, Karen J Liu, Mustafa K Khokha
Canonical Wnt signaling coordinates many critical aspects of embryonic development, while dysregulated Wnt signaling contributes to common diseases, including congenital malformations and cancer. The nuclear localization of β-catenin is the defining step in pathway activation. However, despite intensive investigation, the mechanisms regulating β-catenin nuclear transport remain undefined. In a patient with congenital heart disease and heterotaxy, a disorder of left-right patterning, we previously identified the guanine nucleotide exchange factor, RAPGEF5...
December 27, 2017: Developmental Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"