Add like
Add dislike
Add to saved papers

Manipulation of a floating liquid marble using dielectrophoresis.

Lab on a Chip 2018 November 15
A liquid marble is a microliter-sized droplet coated with hydrophobic powder. The porous coating prevents the liquid content from being in direct physical contact with its surroundings, making the liquid marble perfectly non-wetting. On the one hand, the non-wetting ability allows the liquid marble to float and move across a liquid surface with little resistance. On the other hand, the porosity enables gas exchange between the liquid marble and its surroundings. These properties allow the liquid marble to serve as a bioreactor platform for important applications such as cell culture. Liquid marbles floating on a free liquid surface prevent evaporation due to the high humidity near the liquid surface. Moving a floating liquid marble allows for stirring and mixing inside the liquid marble. This paper reports a novel technique for manipulating a floating liquid marble using dielectrophoresis. A relatively simple setup can move liquid marbles of various sizes across the water surface at high speeds. We also present an analytical model to model and accurately predict the motion of the floating liquid marble. The technique reported here potentially allows for high-throughput and efficient handling of floating liquid marbles as a digital microfluidics platform.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app