Add like
Add dislike
Add to saved papers

Ultrafast Sodium/Potassium-Ion Intercalation into Hierarchically Porous Thin Carbon Shells.

Advanced Materials 2018 November 14
The large-scale application of sodium/potassium-ion batteries is severely limited by the low and slow charge storage dynamics of electrode materials. The crystalline carbons exhibit poor insertion capability of large Na+ /K+ ions, which limits the storage capability of Na/K batteries. Herein, porous S and N co-doped thin carbon (S/N@C) with shell-like (shell size ≈20-30 nm, shell wall ≈8-10 nm) morphology for enhanced Na+ /K+ storage is presented. Thanks to the hollow structure and thin shell-wall, S/N@C exhibits an excellent Na+ /K+ storage capability with fast mass transport at higher current densities, leading to limited compromise over charge storage at high charge/discharge rates. The S/N@C delivers a high reversible capacity of 448 mAh g-1 for Na battery, at the current density of 100 mA g-1 and maintains a discharge capacity up to 337 mAh g-1 at 1000 mA g-1 . Owing to shortened diffusion pathways, S/N@C delivers an unprecedented discharge capacity of 204 and 169 mAh g-1 at extremely high current densities of 16 000 and 32 000 mA g-1 , respectively, with excellent reversible capacity for 4500 cycles. Moreover, S/N@C exhibits high K+ storage capability (320 mAh g-1 at current density of 50 mA g-1 ) and excellent cyclic life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app