Add like
Add dislike
Add to saved papers

Changes in calcium channel proteins according to magnesium sulfate administration in placentas from pregnancies with pre-eclampsia or fetal growth restriction.

We aimed to evaluate the changes in plasma membrane Ca2+ -ATPase (PMCA) and sarcoendoplasmic reticulum CA2+ -ATPase (SERCA-2) according to the antepartal magnesium sulfate (MgSO4 ) administration in the placentas from pregnancies with pre-eclampsia (PE) or fetal growth restriction (FGR). Pregnant women were classified as follows: (group 1) pregnancies without PE or FGR (n=16), (group 2) pregnancies with PE or FGR but without MgSO4 administration (n=14), and (group 3) pregnancies with PE or FGR and with MgSO4 administration (n=28). We observed the localization of PMCA and SERCA-2 in placentas and compared its expression among 3 groups. And we observed its expression in BeWo cells following treatment with MgSO4 and CoCl2 PMCA staining was more observed in the basal membrane, whereas SERCA-2 staining was observed predominantly under the microvillous membrane. SERCA-2 expression was significantly increased in group 3 compared with that in group 1. Considering the gestational age at delivery, PMCA expression was increased in group 2 and group 3 compared with that in group 1 after 36 weeks of gestation. SERCA-2 was increased in group 3, but not in group 2 compared with that in group 1 after 36 weeks of gestation. In BeWo cells, MgSO4 treatment increased PMCA and SERCA-2 expression. PMCA expression was influenced by gestational age at delivery, and SERCA-2 expression was increased in the presence of PE and antepartal MgSO4 administration. This indicates that antepartal MgSO4 administration has a greater influence on SERCA-2 than PMCA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app