Add like
Add dislike
Add to saved papers

Effects of treadmill training on microvascular remodeling in the rat following spinal cord injury.

Muscle & Nerve 2018 November 11
INTRODUCTION: The morphological characteristics of skeletal muscles innervated caudal to a spinal cord injury (SCI) undergo dramatic phenotypic and microvascular changes.

METHOD: Female Sprague Dawley rats received a severe contusion at thoracic level 9/10, and were randomly assigned to locomotor training (TR), epidural stimulation (ES) or a combination of the treatment groups (CB). Fibre type composition and capillary distribution were assessed in phenotypically distinct compartments of the tibialis anterior.

RESULTS: SCI induced a shift in Type II fibre phenotype from oxidative to glycolytic (P<0.05) as well as capillary loss within the oxidative core and glycolytic cortex; the CB treatment best maintained capillary supply within both compartments.

DISCUSSION: The angiogenic response of CB training improved capillary distribution across the muscle, becoming spatially more homogeneous and decreasing mean capillary supply area, potentially improving oxygenation. There is an important role for weight bearing training in maintaining the oxidative phenotype of muscle following SCI. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app