Add like
Add dislike
Add to saved papers

TORC1 signaling regulates DNA replication via DNA replication protein levels.

Accurate DNA replication is at the heart of faithful genome transmission in dividing cells. DNA replication is strictly controlled by various factors. However, how environmental stresses such as nutrient starvation impact on these factors and DNA replication is largely unknown. Here we show that DNA replication is regulated by target of rapamycin complex 1 (TORC1) protein kinase, which is a central regulator of cell growth and proliferation in response to nutrients. TORC1 inactivation reduced the levels of various proteins critical for DNA replication initiation, such as Mcm3, Orc3, Cdt1, and Sld2, and retarded DNA replication. TORC1 inactivation promoted proteasome-mediated Mcm3 degradation. Skp1-Cullin-F-box (SCF)-Grr1 and PEST motif mediated Mcm3 degradation. TORC1-downstream factors PP2A-Cdc55 protein phosphatase and protein kinase A regulated Mcm3 degradation. This study showed that TORC1 signaling modulates DNA replication to coordinate cell growth and genome replication in response to nutrient availability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app