Add like
Add dislike
Add to saved papers

Transcriptomic analysis of immunoglobulin novel antigen receptor (IgNAR) heavy chain constant domains of brownbanded bamboo shark (Chiloscyllium punctatum).

Cartilaginous fish are the evolutionarily oldest group of animals which possess antibodies, T cell receptors and major histocompatibility complex (MHC). The immunoglobulin novel antigen receptor (IgNAR) found in cartilaginous fish is a heavy chain homodimer which lacks light chain. The presence of non-canonical cysteine molecules and lack of CDR2 region make it more significant. To synthesize active binding domains based on variable region of IgNAR (VNAR), knowledge on the constant region dynamics play a significant role. The IgNAR exhibit species variations in its primary sequence features; hence, this study was conducted to determine the IgNAR heavy chain constant domain of the brownbanded bamboo shark (Chiloscyllium punctatum). Peripheral blood leukocytes (PBL) isolated from adult bamboo sharks were used to synthesize a cDNA library. A total of four billion residues of two million sequences (average length 218.41 bp) were obtained. Assembled sequences were aligned with published cartilaginous fish IgNAR constant region sequences. Transcriptome analysis revealed two distinct types of IgNAR in the brownbanded bamboo shark. Also, constant-1 domain sequences displayed 13 unique sequences which may reflect the least number of IgNAR gene clusters. The phylogenetic analysis revealed the closest relationship with the nurse shark (Ginglymostoma cirratum) followed by the wobbegong shark (Orectolobus maculatus) which belong to the same order Orectolobiformes. Analysis of the constant domains of the brownbanded bamboo shark IgNAR revealed an evolutionarily conserved nature and this knowledge can be used to design primers for VNAR cloning. Furthermore, knowledge on the structural features in IgNAR constant domains that increase the stability could be useful in the process of stabilizing human immunoglobulins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app